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Abstract

In this paper, a scattering amplitude for the Polyakov quantum
fermionic string is proposed. Its main feature is that it leads to
a spectrum without the usual tachionic excitation, obtained in the

"semi-classical" limit D+ -», where D is the space-time dimension.

Key-words: Scattering amplitude; Fermionic dual models; ‘Quantum
geometry.
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1. Introduction

Recently, A.M. Polyakov (!r2) developed a formalism for closed
strings quantization; later on further generalized by including
the case of open strings (*'*'%).

An important problem in the formalism concerns the definition
of a scattering amplitude for these strings, whose knowledge af-
fords (in principle) the determination of the associated spec-
trum. A natural definition for these scattering amplitudes re-
mains, however, the main problem. Probably its complete solution
will require the determination of the exact Q.C.D. string (%'7).

In the lack of a Q.C.D. scattering definition, a suggestion for
the closed bosonic string was put forward by A.M., Polyakov (H
and generalized for the bosonic open string case in {3). A re-
markable feature of these scattering amplitudes is that the stan
dard dual (Veneziano) model can be obtained in a saddle point ap
proximation (°).

Oour aim in this letter is to propose a scattering amplitude for
the oﬁen fermionic string (2’%) with the property that the spec
trum does not possesses the usual tachionic excitation in the sad

dle point approximation D= -x=.

2. The scattering amplitude

Let us start our analysis by considering the fermionic string

action in a D-dimensional Euclidean space-time (2057849 ; namely
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Here the fermionic string is characterized by two fields:
firstly, the vector-position ¢(A)(g) (a=1,...,D) and secondly by

v B @r=w® @, vt

(E}), a two-dimensional majorana spinor des
cribing the string fermionic degrees of freedom. D denots a two-
-dimensional parameter domain (embedded in the Euclidean space)
with the boundary denoted by 3D. The presence of the Vierbein
e:(E) and of the two-dimensional vector-majorana spinor xu(ﬁ) to
gether with the auxiliary scalar field F(£) insures respectively
that the action (1) is invariant under geheral Lorentz and coor-
dinate transformations and local supersymmetry transformations
(578¢9y,

The average of a functional W(¢(A)(E): w(A)(E) defined on the

fermionic string random surface is given by the following pre-

scription:
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where Z denotes the usual measure normalization factor.

The functional measures in (2) are invariant under local su-



CBPF-NF-007/85

persymmetry and general Lorentz and coordinate transformations.
They are obtained as the functional element of volume associated

to the following functional Riemman metrics (273):
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where C and C'>1 are arbitrary constants and Fi(xu(E), ¢(A)(E)f
w(A)(a),e:(E))(i=1,...,4) represents terms of these .functional
metrics which vanish for xu(g)EO‘and insure invariance of the as
sociated element of volume by local supersymmetry transformations.
aAs we will explain below, its explicit expression is not neces-
sary.

For the evaluation of the average (2), one has to fix the gauge
associated to the local symmetries of the action (1), quoted a-
bove. As proposed by A. Polyakov (2), a natural gauge is the su-

per-conformal gauge specified by the relations

[
o

e3 () = $®2  err) 288 _ pqey

a
S (&)
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XU(E)
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N =
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Thus, the integrand becomes an effective functional of the
fields &(£), r(£) and an auxiliary field f(f) necessary to insure
the remnants of the local analytic supersymmetry, which are not
destroyed by the gauge (4). Because of this residual symmetry,
we can evaluate (2} for xu(E) = 0 and use this residual super-synm
metry to determine the dependence of the effective integrand in
terms of the fields c(é) and f(£). We notice that, as a conse-

quence of this fact, we need not know the expressions
P 0,8 6 @, @08 @) tn (-, 3-D))

After having described above the formalism to compute averages
in the theory, we now pass to the problem of defining an off-shell
scattering amplitude. For this task, we follow Polyakov's basic
idea: the proposed N-point off-shell scattering amplitude is given
by the sum over all fermionic random surfaces which contain a
given set of fixed points {Xj} (3=1,...,N); i.e.:

N . .
_ (H) (i) 4,(3)
A(X XG) = <[ I d*gj e(Ej) dg, " 48

Jj=1 2
D

1;.--
(), (&) (5. (A) (), (a) :

where ¢(A? (£5) + ie§1)¢{A) (g5) + 1sgl)¢§“ (;) denotes the "fermianic-

-position” of the fermionic string random surface with(BfJ%BéJ))
N

Grassmanian parameters and Il d2£§ﬁ) is the Moébius invariant Haar
i=1

measure, which takes into account the (physical) residual symme-

try of the projective group not fixed by the conformal gauge
G(E)Ga

ei(i)r=e 0 Their explicit expression is given by
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j#a,b,c

The indexes a,b,c are fixs but choosen arbitrarily. We observe
that the effective number of integrated variables in (6) is N-3
and is related to the maximum number of mutually non-overlapping
channels of the scattering process.

The physical spectrum is determined by considering the poles
in the {xj}-Fourier transformed expression for such amplitude,
whose associated residues are identified with the on-shell scat-
tering amplitudes.

In order to evaluate (5) it is convenient to write (5) in mo-
mentum-space:

. oo (A) L (A)
l(Pj HL (Ej))

N
(1)

1
B
(a) ,  (4a) (a) (&)
(8w e (270, (B0 )y (7)
where ( ; ) means the Euclidean scalar product over the Lorentz

indexes.

In the super-conformal gauge (4), the interaction Lagrangian
involving the vector-spinor xu(E) vanishes and the functional in
tegration over the "matter" fields (¢(A)(£).w(A)(E)) becomes of
the Gaussian type. In order to evaluate these functional integra
tions we have to choose appropriate boundary conditions since we
are in the presence of a quantum theory defined in a .two-dimen-
sional space-time D with a non-trivial boundary. At this point we

fix the domain D as the upper-half plane Rj with the real-axis being the
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boundary. Then, we assume as in ref.(®) that the "matter fields"
satisfy the supersymmetric boundary conditions corresponding to
the Nevew-Schwarz model (see eq. (3-7)-(1);(5)) and the Faddev-Popov
determinants associated to (4), the boundary conditions as discus
sed in ref.(").

By introducing the family of self-adjoint operator acting on an
appropriate space of two-component real functioﬁ on R; with bound

ary conditions indicated by N(Neumann) or D(Dirichlet) (*)

—(iq i
53, = (=~ Y5070 ) (8)

we can thus perform the Gaussian functional integration over the

scalar fields ¢'A)(£) with the result
N

-2 R (A) . (A) . (€) i
Det A(SQbNN)e {(i,j)=1(Pi 3P JK (zi,zj,ZG(zi,zi)} (9)

where K(E)(z,z',za(z,z*)) is the conformally regularizated Green's
L3

function for the Laplacian in the metric guv(z,z*)=xez‘5‘(z'z )6uvwiﬂ1

the Neumanh boundary conditions along the real axis (%). Its ex-

pression reads:

-—%;(£n|z-z'||z-z'*|) z# 2z

(g)

K (z,2",26(z,2%)) =

*
(2,27} 1 ppe_ L pnlz-z*| zaz'
27 47 27

(10)

The integration over the majorana fields w(A)(g) is carried ocut
-1

}
L)
the Neumann boundary conditions along the real axis; 1is related

by using the fact that the Creen function (iYuD (z.,z.), with
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to the corresponding flat propagator (iy 3 y~1 (z.,z.) by (see
aa(N) 1 J
eq. (6.11)-(10))

_ —6(2.,2?) _ —G(z.,zf)
(v o) Mz ez = P (iYaaa)(;)(zi'Zj)e 3Ty
where
. -1 _ 1 *
(iv,3,) o0 (z;,25) = (iy.2,) [-;Zu”zi-zjllzi—zj)] (12)

As again, the functional integration over the majorana fields

are Gaussian, we get the result:

N
D w  -() S(zi,zg)) N ( (
4 Timl A) A) . ~1
Det ' (£ 1) {e ¢ n (e, e) T ((iy 5) " (z.,2.0),
"2 @iy B3 ey 2rm e

(13)

where the } in (13) means that we have to sum over all ways of
pairing the fermion fields in (7) and the subscripts (al,uz) de-
nots the matrix indexes of the propagator (12}.

We note that N should be a even number. This implies that the
Polyakov fermionic string model possesses a guantum number which
is subject to conservation and can be related to the N.S.-G pari
ty (11). By evaluating the Faddev-Popov determinants associated
to the gauge (4), we get the effective action and hence the final
expression conformally regularizated for the N-point off-shell scat

tering amplitude.
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where the effective action is given by the expression (%)

10=-D 1 1 T 1
s...[8,2,f] = {la2e= (98)2-=4i ¢ (v.9.)z-= £2]
o+
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400
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It was pointed out in (°} that the term £(£)e®®) in (15) pro

duces a Liouville term after being formally integrated over f£.
Since the complete solution of the supersymmetric Liouville
field theory in R; was not found yet; which would provide the com
plete solution of (14}); we implement a Saddle-point agmxmﬂﬁnﬁan
to evaluate (14) as introduced in refs.{?’®): we take the majora

na field r=0 and consider the classical motion equation for. the
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resulting action (°):

DZ

A = ~————
(10-p) 2

2

uzeza—é'til) {—9———51[——2——1186 r— uea+3g §1} - (16)
~10-D (10-D) 2 10-D 1

A solution of (16) having the property of vanishing autcmatical-

ly at the boundary conditions is the Poincaré metric in Ri, name-

ly:

88, oE,) = tn(—2— Ly o g2 —L (17)

10-D g, 10-D u|z-z*|
By substituing this expression in the eq. (14) and taking into
account that the action evaluated in (17) cancels out with same

term arising from the normalization factor, we finally get:
N

(P})
N . _—_—
R(E) (PI'--.,PN) = n dzzSB)(E i=1 2T )
j=1  J
+
Ry
rg (1-P2) (P(A) 'P(A))
im] ! i ' p2
b i 21 N | “ N I T N 1 *I_;-__l
t—) (I (|z,—2!|]|2z,=2i) ) (1 lz.-2* )
(10-D)u i<j 1 3171 2 jep F 1
(1 g (PSA).pSA)) I ((iy o )"1 (z.,2.))
i, * 3 (al,uz) a'a’ gy 1] alaz) (18)

ik

In order to isolate the on-shell scattering amplitudes, we
have first to find the poles in the external momentum variables (Pi) 22
=(Pi(A) :P]EA)) . Such poles occur when z; and z’i' come close together,

i.e. the only contribution for the associated residues come on-
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ly from the region Im(zi)-+0 in the integrand in (18)}. This phe-
nomenon reduces the integration over R; to the integration along

t+he real axis. As a result, there exist (Euclidean) poles when

(Pi)2
- l = —1,-2,.-- (19)
T
or
(B,)?
— = 0,=1,-2,... (20)
m

This fact implies that the proposed scattering amplitude (5)
leads to a spectrum without the usual lowest state being a Tachyon
(compare with the bosonic case, eq. (4.21-3}.

For the lowest massless excitation, we obtain a expression sim

ilar to the S-matrix elements encountered in Nevew-Scharz model

(t*)

f*% N N 20 ;p )y,
S(Pl,...,PN) = t~—-9———JN { ] dlzsn)( n |z.-z.l = = 1
(10-D) j=l 3 gy Y
{1
G n 2@,y 1 (v, ez ) (21)
G.i) 2 T3 (e ,e) Ya%a 1775 Tagay
vy 1'72
where now
(ay 2 ) a2 o= Uiy, ) (tnfzg-z 1), o (22)
a a 13 %% a 27 ] 172

N

and the MObius invariant Haar measure jgldlz§ﬂ) is taken over the
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real axis.
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