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Abstract

The present model describes the exotic decay of nuclei including the molecular phase of the
fragments by using oaly the basic elements of the liquid drop fission model. The Coulomb potential
energy is the exact solution of the Poisson equation for a uniform charge distribution in the nucleas
volume and the surface potential is defined in terms of an effective surface tension. The Werner-
Wheeler aproximation for the velocity field of the auclear flow determines the inertial coefficient of
the reduced onedimensional barrier penetrability problem. The model is wel.l‘ succeeded to calculate
the half-life of exotic decay process as well as to calculate the alpha desintegration half-life.

-

Rey-words: Surface tension; Gamow penetrability; Half life for exotic

and alpha decay.
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1 Introduction

Although the discovery of the nuclear fission date of the thirties, the fission process
with great mass asymmetry was observed only in the seventies. For the first time this
exotic decay was observed at Centro Brasileiro de Pesquisas Ffisicas (CBPF), during
a work on U®® search track fission produtsi!23), Later, other independent experimen-
tal observations by Rose and Jones and Alessandrov et. ¢l!® confirmed the CBPF
pioneering results. Since then, many different models and theoretical estimates have
appeared to explain the experimental results and to predict new types of such nuclear
processes,

Different nature and forms of the potential has been used in these modelst6.7.8.9.101
The results are led to a reasonable accordance with the observation by adjusting the
model parameters. The maximum deviations are within two units around the logarithm
of experimental half-live. The number of parameters employed in each model is a
consequence of the nature of the potential barrier used I"*, or it depends on the adopted
way in which the mass and charge vary in the prescission phase!®!1, In addition, it also
depends on the empirical method of using the zero point vibrational energy of the
systeml!6.7, X

In this work we calculate the half-lives for exotic decays considering a double spherical
parametrization for the shape of the deformed nuclear system during the fission process.
Although this shape parametrization has been used in others exotic decay models, for
the first time we make use of an analytical closed expression to calculate.Coulomb energy
of the molecular phase of the process. The multidimensional evolution of the system
is reduced to the onedimensional case by the geometrical constraints to preserve the
adopted shape in the course of the whole process, and also keeping constant the total
volume of the system. In the reduced onedimensional problem the Gamow penetrability
factor is calculated using an effective mass, determined by using the Werner-Wheeler
approximation for the fluid velocity field of the nuclear flow. To complete a basic element
of the liquid drop scheme a surface term is included in the potential of the model, with
a convenient definition of the surface tension. With only these minimal ingredients of
the fission theory in the context of the liquid drop model, we get results in excelent
accordance with experimental data for both exotic and alpha decays.

2 The Model : Shape Parametrization and Potential

In the molecular phase of the process the geometrical configuration of the deformed
system is approximated by intersecting spheres with different radii. For the complete
specification of this configuration it is necessary four independent coordinate, disre-
garding the location of the center-of-mass of the system. We show in fig.1 a sketch
of a generic configuration where we specify our choice of coordinates: the radii of each
spherical segment, R, and R,; the height of the largest spherical segment, ¢, and the
distance between their geometric centers, (. At the end of the prescission phase the
system reaches a limiting configuration of two spherical tangent fragments with radii
Ry and Ry, respectively, for the cluster emitted and the heavier daughter.

To maintain the adopted shape parametrization for the deformed nuclear system, it
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is necessary to establish a geometric constraint,

R-((-¢F = R - €, )

keeping a cominon contact section of the spherical segments during prescission phase.
Also the constant total volume of the system is considered as another constraint relation,
which is expresed in our coordinates by

AR + R + JRIC—-€) + RIEl - [(C-€P + &) = 1R, @

where R, is the parent nucleus radius. During the whole molecular phase of fragments
we have taken a constant radius to the spherical segment corresponding to the nascent
cluster, i. e., we have fixed R, = R;.

The model considers only the Coulomb and surface potential energy contributions to
the deformation energy of the system. Analytical models for jexotic decays have never
used before an explicit expression for the coulomb energy durihg the prescission phase.
In the most precise way the Coulomb energy has been taken into account by folding
numerically the charge density!®!¥ in nuclear volume. In our calculation we have made

use of Gaudin expression!!? for the electrostatic energy of spherical portions of uniform
charge distribution,

8
Vc = 6#055(31,33) Pe (3)

where p, is the initial charge density, ¢ is a function of angular variables z, and z,,

In = 1?—91
:;=6,—1r s
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which are defined in terms of the angles 8, and 8,, shown in fig.1.
The expression for the £ factor in terms of auxiliary functions f and g is

5(31!32) = (

1 1 )[f(-rz) _f=)) _

sin’z, sin’z,’|sin®z; sin‘z,

(cot z; + cot z,) [P(I’)"'% + J"(Il)"'%] +

sin’ z, sin’ z,

- z : {f(l'l +z3) + %Sinz(l'l'i'zz)] +

T 8in*z

sin?

glotz) + glxa)] @

where f’ is the derivative of f with respect to its argument. ,':Explicitly, the auxiliary
functions f, f' and g are given by

fz) = 1-2 cotz—-;-.tang ,
£ _ 2z - sin(2z) 2 T /
- 2z 43) z ., _2
g(x) (1.5 + tan > + 3 tan 3 tan2 + prom gt

with z assuming the values appearing as arguments of these auxiliary functions in eq.(4).
The above expression of coulomb energy is the exact solution of the Poisson equation
for uniform charge distribution in the system volumel!?,

For the surface potential we have introduced an effective surface tension, Tes1, to the
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deformed system, defined through the equation

32_%;21222 2 _p2_ By _
53 (R,-E—ﬁ; +41ra'.”(R, R R,) = Q , (5)

where Z,¢ and Z;e (i=1,2) are the nuclear charge of the parent nucleus and of the frag-
ments, respectively. This definition establishes that the difference between the energies
of initial and final configurations of the system reproduces the energy released in the
disintegration, Q = M — M, ~ M, . The masses in the Q-value expression were taken
from nuclear data table!!®, Then, for the surface potencial we have,

Vo = b (51 + 5)) (6)

with the surface of each spherical segment, 8

Si = TR (R; + &) (7)
and T
(-¢ i=1
& =
{E i=2.1

The effects of the centrifugal potential in the molecular phase cannot be descussed
without a careful analysis of angular momentum transfer.in the hydrodinamic flow of
the nuclear fluid. In a simplifying approximation all models which take into account
this term have considered it only after the scission point,

_ R+
Ve = 2‘1—""(—,——- . (8)
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In this appraximation, the effect of the centrifugal potential to the half-life of exotic
decay is completly negligible!!®1M. The reduced mass, &z = M M,/(M, + M,), defines
the rotational inertia of the sytem after scission point.

In fig.2 it is shown our oncdimensional potential,

V=V+V+Ve-V,, (9)

provide with the constraints given by egs.(1,2) and with the constant radjus of nascent
cluster. In the equation above, V; means the reference of potential corresponding to the
sum of self potential energies (Coulomb and surface) of each fragment in the asymptotic
configuration. :

3 Gamow Factor and Decay Half-Life -

The quantuin transition rate from initial to final state of the system has been de-
termined by reducing the problem to the onedimensional barrier penetrability, similarly
to Gamow alpha decay theory!!l. Even when the emphasis of the model is on the fis-
sion aspects of the process, the decay rate calculation uses the same procedure. The
penetrability factor is calculated suposing that the system tunnels a barrer equal to
V — Q. The shell effects in the nuclear masses expressed in Q-value are reflected in
the resulting barrier. Consequently, they are also included in the penetrability factor,

P = exp{-—% j:c \/2p[V(C_)"'Ql d(} . . (10)

The action integral in the penetrability factor is given in terms of the variable of the
model, {, and the limits are the inner turning point,

o = Ry - Ry ,
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and the outer one

Z; 23 e’

C== Q

Finally, the rate of the decay is calculated as
A = AP

The characteristic time scale of surface oscilations in initial state of the system is
used to define barrier assault frequency for the process, Ap.. Swiateckil!® values of
assault frequency with an odd-A parent nuclei hindrance effect,

1020 41 - A=odd -
/\o =

102 s A = even .

4

were used in present work. With this frequency fixed, the half-life is promptly calcu-
lated,

‘r=lnT2. I,(ll)
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4 Radii and Effective Mass )
The final radii of the fragments should be given by

R= [Zn, (12

to be consistent with the uniform charge distribution considered in the Coulomb poten-
tial. The parent nucleus radius is determined by the simple formula

R, = rg Al | (13)

setting rg = 1.37 fm in all calculations. :

With the Werner-Wheeler approximation for the velocity field of nuclear fluid in the
prescission phase, we can obtain an expression for the kinetic énergy of the system!®.19,
The constraint relations of eqs.(1,2) and a constant radius for the cluster reduce the ki-
netic energy expression to a quadratic form only in the velocity, (. From this expression

we get the effective mass for the degree of freedom ¢. In the center-of-mass frame we
have for this effective mass,

4
2y :
mar = T oS 4 2 x Y R R(R + d

=13

4 B ‘f-‘)’ [423 - 9R: — 7d; + 12R; In (-2-,15)]} . (14)
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where the mass density of each spherical segment is p; = 3M;/(4rf3), and

2 = —1[3v; + na® (R + d))) /(v + v3) zp =z§ + 1
Bi=0 M= -iR
d=(¢(-¢§ d = §

hh = Ry - ¢+ ¢ * hg =R, - € -,

The prime in the above expressions means the derivative with respect to the variable
(,and v = (I + di)’(Ri + hi)'is the volume of each spherical segment. We
have used this effective mass as the reduced mass p in eq.10, defining the penetrability
factor. Although the expression for the effective mass changes for different choices of
coordinates and frame the result for the decay rate is the same!!9l, In fig.3 we show the
values of the effective mass of eq.14 for different cluster emission processes. We note
that in the limit of asymptotic configurations, this expression for the effective mass

reaches the reduced mass of the system when the fragments are.already formed, i, as
it should be.

5 Results and Discussions p

The calculated half-lives of different exotic decays observed in some recent experi-
ments are shown in fig.4 . The thick line of the upper region of the graph corresponds
to the calculated result, and the full circles are the logarithm of experimental data com-
piled in ref.{16]. This result is for zero orbital angular momentum of the fragments. The
coresponding reaction and values of half-lives are presented in table-1 . In the table,
the reactions with the same cluster emission in exotic process are grouped in blocks.
The groups are marked with broken and open arrows in the upper part of fig.4 .

Without any modification in the mode] only changing the input data for masses, all
the calculations were repeated for alpha particle emission of the exotic decay parent
nucleus. The resuits for this essay are presented by the thin line in the lower region
of the graph. The numerical values are in the second column of the table-1 . The full



CBPF-NF=-006/93

squares are the experimental results compiled in ref.{16). For alpha decay it should be
remembered that angular momentum is not completly negligible for various decays and
it might correct some small deviations from experimental data.

In fig.5 we show how sensitive are our results to the effect of the centrifugal poten-
tial, including V; after the prescission point. We can see in fig.5~(a) that the effect is

negligible for exotic decay, as it was pointed out before, but it may be significative to
the alpha decay, as it is shown in fig.5-(b).

6 Conclusions and Fi_nal Remarks

We have analyzed the half-life for the exotic decay by using only the basic ingredient
of the liquid drop fission theory. The Coulomb energy was calculated analyticaly for
the molecular phase of the system, with a double intersecting spheres parametrization
for the deformed nuclear system. .

The Werner-Wheeler approximation for the velocity field of nuclear fluid in the
prescission phase defines the mass coefficient i in the Gamow factor of the onedimensional
barrier penetrability calculation.

The effective character of the model is ma.rked by the surface tension defined in
eq.(5). At this point we have note that nuclear radii are involved in this definition, so
the nuclear radius parameter ry controlls also the intensity of the surface potential. As
we are not using explicitly effects of proximity force!’8:1% to the potential, we have to
compensate it with an appropriated intensity of our surface term. This fact justify our
choise of rg = 1.37fm. Finally, it is important to remark that we fix this value for all
calculations and for both modes of decay presented in our results.
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Figure captions

Figure 1: Shape parametrization of nuclear deformation. The nascent cluster corre-
sponds to the spherical segment with radius R;, and the heavier daugther is represented
by the spherical segment with radius R,. The intersection of the spheres is a circle with
radius a, and § is the distance of the plane of the intersection to the geometrical center
of the heavier fragment. The distance between the geometrical centers of the fragments
corresponds to (.

Figure 2: Onedimensional potential barrier. The coulomb energy is represented by the
dotted curve and the long-dashed curve is the surface potential. The total potential is
the continuous curve.

Figure 3: Werner-Wheeler effective mass for differents cluster emission as a function
of the distance between the geometrical centers of the spherical segments. After the

scission point, the effective mass is constant and equal to the reduced mass of the
system, g. :

Figure 4: Half-lives for the exotic and alpha decay. In the upper region of the graph the
thick line is connecting the logarithms of half-life values for the exotic decays listed in
table-1. The experimental data are shown by circles, and the arrows atached to the first
and last exotic decay data indicate that these values are only lower limits determined
experimentally. The error bar for the other data are comparable to the circle size. The
thin line in the lower region of the graph connects the results for logarithms of the
alpha decay half-life of the parent nuclei of the exotic decay. The data for the alfa
decay half-lives are shown by squares, with error bar smaller than the square size.

Figure 5: Half-lives calculated with the centrifugal barrier. The solid line in part-
(a), represents the half-life of exotic decays calculated with £ = OA. The dotted lines
represent the half-life calculated with ¢ = 6h. In part~(b) the results for the same
calculation to the alpha decay mode of the exotic decay parent nuclei are shown.
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Figure 1
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Table and its caption

Decay Reaction LogirE***(s) | Logyor®(s)
Fr?3! — CW 4 TO7 16.21 2.21
Ra?! — C! 4 Pb? 14.98 0.95
Ra?? — CH 4 Pb°® 11.72 1.73
Ra?® — CU 4 Pp™® 15.92 4.80
Ra? — CU 4 pp210 16.50 5.73
Ra??® - CH 4 Pp1? 21.09 11.02
Th3%® — Ne 4 Hg?® 24.39 12.76
Pa®! — NeM 4TI 23.60 10.80 ]
U? - Ne?t 4 ppee 20.10 0.70
U3 _, Ne?* 4 Pp3o® 24.73 12.89
U3 — Ne?s 4 ppios 24.88 12.89
Np®7 — Mg* + T1?7 27.68 13.056
7

Am*! - §i¥M 4 T 25.01 9.79

Table 1: Decay reaction and calculated half-lives. The first numerical column is the
logarithm of the exotic decay half-life, and the second one corresponds to the logarithm
of the alpha decay half-live of the exotic decay parent nuclei.
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