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Abstract

It is shown that the self-duality constraint on the scalar field (combined with the
equations of motion) by itself leads to the critical forms for the potential that minimizes
the energy functional in the Chern-Simons Higgs system.

In the case, we have only the Chern-Simons term in the SL(2,R) gauge group one
obtains a formalism that yields the equations of motion of a variety of non-linear models
in two dimensions when the curvature is set equal to zero.
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The abelian Higgs system with both the Maxwell and Chern-Simons (CS) terms in
2+1 dimensions has drawn much interest recently [1,2,3]. In the earlier papers the critical
potential leading to self-dual solutions, which minimizes the energy functional, in the
Chern-Simons-Higge (CSH) system without the Maxwell term, was obtained [4,5]. It was
also pointed out [6] that the self-duality constraint on the scalar field combined with the
equations of motion by itself leads to the critical forms for the potentials in the case when
only the CS or only the Maxwell term is present. The notion of self-duality was also
extended to scalar superfield and the critical superpotential obtained [6].

The Lagrangian for the bosonic Chern-Simons Higgs system is (h=c=1)

L= (ﬁ”a‘)(D,.a.) - V(IGI’) + % ik ‘Upfvp - ‘Efpv.f’w’ | (1)

where D, = 8, —tev,,, 13,, = 8, +iev,, p = 0,1,2 are the spacetime indices and a is the
scalar field.
It was also noted in [4,5] that in the Chern-Simons-Higgs system, the energy functional

obeys a Bogomol'nyi-type [7] lower bound when a special choice of the Higgs potential is
imposed. The bound is achieved if the scalar field a satisfies the following first order
self-duality condition (i=1,2 and €!? = 1)

Dia = —iDza, or D;a = -ie"'i)_,-a. (2)

which may be regarded as the two dimensional analogue of the self-dual gauge field strength
in four dimensional space-time.

The general result we find for the potential with the aid of eq.(2) and the static
condition is [8]

V'(lal*) = e'v® + ~(2¢ ol — 8)ua, (3)

where vy is given by

1 ' €
[5(2¢%(a]* - 8]) + 1]vo = —(laf* — C?). (4)
In the limit £ — 0 (no Chern-Simons term), we find

V =(e*/2)(la]* - C?)?, (5)

and in the limit e & co, x — oo such that (e?/x) — finite the terms originating from
the Maxwell term in the egs. of motion drop out. We find

V(lal) = (¢*/n)*(la* — C?)*|af? ()
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Both (5) and (8) agree with the previously known results.
Our ‘procedure can be extended also to the scalar Superfield [6]

&(z,0) = a(z) + ify(z) + i80 f(z). (N

Here a(z) is & complex scalar, 4*(z) its complex superpartner and f(z) en auxiliary
complex scalar. The gauge covariant spinorial derivatives may be defined to be

Ve = (D 4+ )P, V28" = (D™ —e[*)3". | (8)

where « is spinorial index, D™ is the covariant spinorial derivative and I'* is & Majorana
spinor connection spinor superfield.
The self-duality constraint on the matter superfield now takes the form [6]

Ve = i(+°V) 8,  VoE* = —i(y"V)? %" (9)

The specific (critical) superpotential V(j®]’) can be obtained and shown to contain the
results of the purely bosonic theory without invoking any explicit N=2 supersymmetry of
the action [9].

Consider next the following gauged non-abelian Lagrangian with the Chern-Simons
term [10,11] ,(hk=c=e=1),

£ = WD+ e (D) (D) +5 2 (4,0, Apa + 5 F s e P 4,7) ~ L Fi*F*,
(10)
where 9 is a multiplet of matter fields, s = 0,1,2 or (¢,2,y), A, = 4,°X,, X, being the
Lie algebra generators, D, = (8, + 4,) and V is the potential to be determined when we
impose the static and self-duality conditions. The egs. of motion resulting from (10} are

Db = — L DDy — V1Y)
D, F* 4 g &P F,, = J%, (12)

where J#* = —8L matter/0Aya.

On adding to them the self-dual equations D;¢p = —ie*/D;yy and assuming the static
configuration, eqs.(11) and (12) simplify very much. For example, in the absence of the
kinetic term for the gauge field, we find, following the procedure described for the abelian
case, that 4 may not vanish, and the critical potential is determined to be [12] (J°* = p?)
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V = (L)) + const (13)

which was assumed at the beginning in Ref.[10]. In the presence of the kinetic term, it is
possible to choose Ao to vanish and we find V = (—-1/ 4m)(p®ps) + const. while x = 2m
is required for consistency.

Fineally, we make the following remarks for the case when & — 00 in eq.(12). We find

. k]

Fy, = 0,4, — 8,A, + [Ay, 4] = 0. (14)

On the other hand we have, in two dimensions, the curvature two-form [13,14]

N=dl+TAT, TI=6X, ¢=1,23, (15)
where §, are 1-forms. Explicitly

Q = {6,T, — 8,1, + [T, T, ]}dz* A dz*. (16)

N -t

Let us consider the X, to be the generators of SL(2,R), i.e. X;=(0’_°l), Xa=(g0)
X;=G:). Equation (14) is then seen as a zero curvature condition {1 = 0, if we impose,
for example, y independence, viz, 8,( ) = 0 and meake the identification p = z,» =¢,T, =
A, = A,,I, = A, = A, and Ty = A, = 0. Making various choices of 4, and 4, we
obtain the non-linear equations in two dimensions like sine- Gordan, modified Korteweg-de
Vries (MKdV) , non-linear Schrodinger model, KdV, and Liouville equations.

For the case of 8;( ) = 0 and the identifications p = z,v = y;Ty = 4: = 0,

i _ Y
I‘,,=A.=( -n ,u.), I, = A, 1 ( cos u smu), a7)

--%u. n = 2; —sinu cosu

where 0 is & constant we obtain from eq.(16)

tgy —sinu = 0. (18)

which is the time independent sine-Gordon equation in two dimensions. Its solution is
t = 4tan~! ezp(Cz + y/C) where C is a constant.

When X, are the generators of SU(N) algebra [10] the various reductions lead to
two dimensional non-linear equations, Tode , affine Toda, sinh-Gordon, Bullough-Dodd,
Principal chiral field, non- linear o-model, and CP"™ model.
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