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ABSTRACT

We give a complete self-contained presentation of
the description of spin-two fields using Fierz variables AaBu
instead of the conventional standard approach which deals with
second order symmetric tensor ¢HV' After a short review of
the classical properties of the Fierz field we present the
quantization procedure. The theory ©presents a striking

similitude with electrodynamics which induced us to follow

analogy with the Fermi-Gupta-Breuler scheme of quantization.
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1 INTRODUCTION

The exact Einstein‘s General Theory of Relativity can be
formulated in terms of a field theory in a fixed flat
space-time background. That this is not a mere approximation

[1{ Interest on

procedure we have learned from many authors
this alternative description has grown considerably in the last
decade according to both the increasing attention given to
unification program inspired by the success of the electro-weak
unified scheme, and the recent convergence between elementary
particle physics and cosmology. On the other hand, the
occurrence of many unpleasant features in the standard
canonical formulation of General Relativity, as it has been
pointed out many timeslz], has led to the search of alternative
choices of the basic variables to fit into the construction of
a Hamiltonian description of gravitym. These considerations
gave us motivation to undertake the re-exam of the different
approaches one may choose to describe a massless spin-two field

41 claimed that there exists

in a Minkowski space-time. Fier:z
two distinct, although completely eguivalent, ways to
accomplish such task. We can either make use of a symmetric

second order tensor P (the so-called standard

uy
representation)[m; or, on the other hand, we can use a third
order tensor Auvk (henceforth called the Fierz representation),
which is anti-symmetric in the first pair of indices and

additionally satisfies the requirement of being pseudo-trace
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free, that is, A

AVA + Av + A = 0. The standard description

Al ALY
has 10 independent components, and the Fierz description has
20; thus, neither is free from unphysical variables, once we
know that a massless, spin-two, field has only two degrees of
freedom per each space-time point. Although one should
certainly prefer to work within a conceptual scheme that
dispenses with any reference to unphysical degrees of freedom,
the general belief that the laws of physics can be deduced from
basic symmetry principles has led physicists to deal with
enlarged, generic sets of variables comprising physical and
"non-physical" components. The success of the gauge description
of electro-weak forces has enforced this attitude. In the same
vein, we can follow Einstein (as quoted by A. Salam), who
believed that “Nature is not economical of structures: only of
principles of fundamental applicability". One of these, the
general covariance principle, is precisely the main responsible
for the appearance of such extra non-physical variables,

A typical example comes from the theory of
Electrodynamics. Although the electromagnetic field has only
two degrees of freedom, its standard description is made

through the use of a four-vector aktel

. The theory must then
provide a mechanism to eliminate superfluous quantities. As it
happens in many theories, in Electrodynamics there is no unique
manner to perform such elimination. Consider, for instance,

Fermi‘s program (which will provide a paradigm for our analysis

in a following section, in the case of gravity). Instead of
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taking the conventional Maxwell‘s Lagrangian Lu = - % Fquuv,
Fermi deals with an extra term that destroys explicitly the
previous gauge invariance of the theory to wit:
L =L - % [A”,u]z. The new Lagrangian L  has the merit of
yielding a wave egquation oA = 0 and non-vanishing momenta
canonically conjugated to all A‘us. However, the Hamiltonian
one gets from such L suffers from not being positive
definite. In the quantum version of this theory a direct way
to solve this problem is to restrict the accessible states of
‘the field to a physical sub-space me- of the complete Hilbert
space H by imposing a subsidiary Aum.ulw > = 0", fThe
theory contains a typical spin-one field and a spin-zero
(scalar) part. Like a miracle, the above auxiliary condition
makes the energy associated to the 1longitudinal photon to
cancel precisely the (negative) energy of its scalar part,
leaving only two independent components of positive energy to
survive.

Turning to the case of gravitation we shall see that a
very similar behavior is found. In order to simplify our
exposition we will 1limit our presentation here only to the
linear case. We postpone the exam of non-linearities for a
forthcoming paper. We can just anticipate that the procedure
to deal with the non-linear case is very similar as the one
done by Feynman, Gupta, Deser and others in case one uses the
standard variable. However, the uses of the three-indices

tensor has some new peculiarities that it does indeed merit a
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more extensive analysis.

Once the classical theory of spin-two field in Fierz
representation has been examined in a precedent paper by two of
us (Novello, M. -Pinto Neto, N.)MI, we will restrict ourselves
here only to its guantum version. The paper is self-contained
and it is organized as follows. In section 2 we make a review
of some properties of the classical theory. From the Fierz
variable Auﬁu we construct the tensor caBuv which plays the
rqle for the spin-two field as Maxwell‘s tensor Fuv does for

electrodynamics. The symmetries of C are precisely the

afuy
same as Weyl's conformal tensor of any Riemannian

gecnmetry. One should be tempted to associate C to a sort

afuy
of weak field limit of Einstein‘s theory. Although there is
some support in this interpretation this similitude rests no
more than an analogy. Indeed, as we will show in section 2,
the tensor caBuv contains two independent spin-two fields of
opposite parity. This means that we are dealing with a theory
that contains more than the linearized version of Einstein‘s
theory of gravity. We can achieve the elimination of one of
these spin-2 fields by invoking Fermi‘s procedure to restrict
the physical Hilbert space of states. We will deal with a
Maxwell-like Lagrangian for the Fierz field I.=<% casuvcaﬂuv°
Curiously, this theory is such that the spin-2 fields
contribute to the Hamiltonian with opposite energies. We
choose to associate gravity to the positive parity and positive

energy part of the field. One should, however, note that only
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after the introduction of an interaction this choice could be
properly justified. We also describe the classical part of the
theory for a Lagrangian of the Fermi-type in terms of the Fierz
variables.

We then use in section 3 and 4, in which we gquantize the
two classical theories developed in section 2, the Fermi method
to éliminate additional degrees of freedom of the theory and to
describe a c¢onvenient canonical quantization. When dealing
with the Maxwell-like Lagrangian L « ¢® the basic two-spin-2
fields are represented by 3-tensors aU and ﬂ”. The momenta
canonically conjugate to these variables are, respectively,
given by the electric EY and the magnetic B! parts of the

field C This allows us to achieve a completely new set of

aguy”
canonical variables to represent spin-2 fields which deserve
certainly to be examined further. It seems worth to point out
that recent proposals of considering alternatives variables to
describe canonical quantities in Einstein‘s theory, e.qg.
Ashtekar and others, deal with a combination of the electric
and the magnetic potentials of Weyl conformal tensor.

The complete relation of our present investigation and
those others can, however, be understood only after the
completion of non-linear modes of vibrations of Fierz field is

taken into account. This will be the subject of a future

report.
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2 REVIEW OF SOME CLASSICAL ASPECTS OF THE DYNAMICS OF FIERZ‘S

VARIABLES

Let A ” be a real tensor endowed with the properties

Bu
(Fierz)

Bapu * Pgap T ° (1a)
Pagu * Pgua * Auap T O (1b)
or, equivalently,
aBu 1 _afpo "
AT v, =M Boc  Ygu = °

is the metric tensor of the Minkowski space-time: and naBuv

?u
is the Levi-Civita completely anti-symmetric tensor. We assume

henceforth that the trace AQBB vanishes. Thus, Aaﬁp has only

16 independent components. From A

aBu we construct the

corresponding field caBuv:

A - traces

Capuv = Pagru,v1 * Auvie,s]
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= Augu,v) Y Puwra,81 * +

1
t3

N =

Aav)?eu Agu)Tav

1 1
=2 Bauy?ey T 2 ParyTan (2)

in which A, =a? . Note that the derivative (represented
Bu B U,A
by a comma) is taken to be covariantly defined in terms of the

metric 1uv; it is identified with the common derivative S irf

ax
one chooses a cartesian coordinate system in which case 1HV
reduces to diag.(+---). The tensor field ¢ has only 10

Uy
independent components, once from its definition it has the

symmetries:

Caguvy = 7 Cagru = T Cgauy = Suvag

ou

Besides, it is trace-free: caﬁuv' = 0 and pseudo-~trace free:
» ol .

CaBuvw = 0. This tensor chuv plays the analogous role, for

the case of the spin two field, as the tensor Fuv does for

electrodynamics. Thus, in conformity with Maxwell‘s theory one
is led to propose for the Lagrangian of this field the

expression:

- 1 . apuy
te =8 C Capuv (3)
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which implies the eguation of motion

aBuUy =0
. (4)

In terms of the Fierz variables we obtain

g[8 a] ,A,v
(5)

The Lagrangian (3) has an internal (gauge) symmetry. Indeed,

(3) ig invariant under the map:

1 1 A
-3 (6)

> Rogu = Pagu t Wuta,81 ¥ 3 Tua®s) ,a

w
A age = Pagu * Yag,p

aBi

in which WaB is an arbitrary anti-symmetric tensor.

The freedom guaranteed by this invariance allows us to
choose the potential Kaﬂu to satisfy a generalized Lorentz

condition:

i

Aag ,u =0

by just choosing WaB such that:
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C_a M
Wag 2eg 1

In this case, eq. (5) becomes simply the wave equation:

ah g, = O 7
with

safu _

A “u-o (8)

The situation is in complete analogy with Electrodynamics,
in which one can deal with a vector potential iu that obeys

Lorentz gauge P = 0, by choosing a scalar field A(x) such
L

H

that oA = - A“ under the transformation A = A + A .
Py’ [T U M

this case Maxwell‘s equations reduce to nAu = 0 plus the gauge

In

constraint ak " = 0,

r

Due to the gauge symmetry, the theory of Aa must deal

Bu
with 12 first class constraints in the Hamiltonian formulation
(note that to fix Adﬂu one must specify the six quantities WaB
and their corresponding time-derivatives).

The momenta are given by:

n = — = (9)
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Consequently one gets the six primary constraints:

apo

We then split Aa

(10)

into the standard 3 + 1 decomposition

of space-time obtaining for their corresponding canonical

Bu
momenta:
For Cl = Ao it follows:
M = i « 0
acl
For BU E AUO it follows:
R 2 (P
L
o -
For a” = Au » it follows:
nu - ?L = Clojo
da

13

ab

ab“ej) it follows:

1
For d” = 3 A

= EU

(11a)

(11b)

(12a)
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-11-
ptt = S . . % c“'“oeabi’ = g’ (12b)
sA
1)
in which:
1

[+]
a(u} = A ljk+ =27 kl% jlo '

cun * C” + cjl f

Chpn ™ cu - S,

and € is the 3-dimensional Levi-Civita tensor.
We remark that, in contradistinction of electrodynamics in

which the momenta nM

is given by the electric vector uniquely,
here in the case of Fierz theory, both the electric and the
magnetic parts of the field appear in the expression of the
momenta. This is nothing but the fact that we are dealing with
two spin-two fields of opposed parity. Just for completeness,

we should say that the decomposition of the tensor C in

apLY
the electric (Euv) and magnetic (Buv) parts can be made
covariant. Indeed, we define, for an arbitrary observer that

moves with four-velocity v¥:
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- o
Eyp = CuapgV VB

B =06  y%F

Ly uavg

It then follows that we can write:

Conpy = (7au1078Vte - nauka"ﬁvrc)vhvtEac -
“Myuroc¥gres + 7auha“Bvrc)vhvtBac .
in which:
Tapro * Yaa%ue ~ Yao¥ua
Constraints (10) are thus represented by eq.

9]

(11). Following Dirac‘'s procedure to deal with such

quantities we obtain the corresponding secondary constraints:

n « Q. (13a)

x 0, (13b)
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=13~
The twelve constraints (11) and (13) are first class and

generate the gauge transformations (6).

In order to fix the gauge we impose:

g, =0 (14a)

8, = O (14b)
“i: « 0 (14¢)
Al «o0 (144)

i,

This choice will be called, for obvious reasons, the radiation
gauge.

The constraints (11), (13) and (14) are now second
class. We define Dirac brackets which will make these
constraints to become strong equalities and eliminate the
spurious variables.

Egquation (7) becones:

na“ =0 {15a)
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) (15b)

is automatically satisfied by (14). The reduced

Hamiltonian is

= 3 l. .‘j__J_' 1]ym
H Idx[+4a”a 4a o +

1 Lt),m
+ 7 Alh_ﬂ ] (16)

In order to exhibit that indeed the field Aa is reduced

Bu

only to their spin-two parts, let us consider plane wave

solutions of equations (13):

a  (x) Q”exp(-iKux”) + h.c . (17b)

-4 H
A”(x) iR”exp( 1Kux } + h.c . (17b)

They satisfy (15) if K kK" = 0 and satisfy (l1l4c) and (144d)

if:

11

QUK’ =0 (18a)
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R jx’ =0 (18b)

Tensors Ql | and R” have the same symmetries as alj and

A1 3 respectively.
Choosing a wave propagating in the X’-direction we obtain,
from (18):

Q_=0 (19a)

R_= 0. {19b}

As a consequence of the symmetries of Q1 , and Ru and
equations (19) the unigue independent components of QU and

Ru are Qu, Qm' Ru and R21' We then define the dquantities

Q, and Ri such that:

Q, =Q. FiQ, (20a)
Rt = R11 ¥ 1R21 (20b)
We then proceed to perform a coordinate transformation

corresponding to a rotation of an arbitrary angle & about the

X’~axis. Then it follows that the quantities defined in (20)
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-16=
behaves under the form:
+
Q) = ™%, (21a)
2t @
R; = @ R: (21b)

which shows that the wave can be decomposed in two irreducible
parts Q, and R, ., each one having helicity *2. We will come
back to this later on when studying its quantum version.

Although we could obtain by this procedure the true
degrees of freedom, we lost the manifest Lorentz covariance of
the theory because the radiation gauge condition (14) is not
Lorentz invariant - exactly like in Electrodynamics.

The formal resemblance of both theories suggests that the

Lagrangian Eq given by (3) must be modified by setting

2@ = 8 Capuv - N7 (22)

and we left the value of the constant a to be fixed under the
condition that this Lagrangian yields the wave equation
nAaBu = 0, It then follows that a must take the wvalue
a= - % A direct wmanipulation with the Lagrangian ¥ set

(g}
it into the most convenient Fermi-like form:
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7 1

@ — 3 (B

aBu,l)z + div. (23)

Indeed, from such Lagrangian it follows precisely the wave

equation:

apgu

The difficulty with the momenta is solved, once from (23)

it follows that the new momenta canonically conjugated to AdBH

is now given by:

Sﬁ(;,
4 = e = A (24)
R SAGBHJ afi,o
The Hamiltonian that follows from this theory is:
- 3 {1 . safu _ 1 aBu K
H Id x[2 Aygy B 3 Aygu ATPH 8 ] (25)

Note that there are no constraints in this theory because the
Lagrangian (23) is not gauge invariant.

In order to obtain the same quantum versions of the two
theories developed in this section we must impose some new
Fermi-like conditions on the quantum states of the last theory.

This will be done in the next section.
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3 QUANTIZATION OF FIERZ SPIN 2-FIELD
a) THE LAGRANGIAN c°

The theory, in the radiation gauge, is given by:

The dynamical quantities of AaBu are represented by two

second order symmetric trace-less 3-tensors o and A”. The

J
momenta canonically conjugated are then, respectively, given

by:
nt =80 _1 ol -2 a," c”'!" {27a)
* 2 4 "L ,m
-1 ]
LY
p! = 8L _ _ % AV - % “ut kcj)tx (27D)
sh '
1)
A direct inspection on the decomposition of CaBuv in terms of

a” and au then shows that these momenta are nothing but the

electric (E”) and the magnetic (BU) parts, that is n'! = gV
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and P = B', Thus in the present theory we are dealing with
two independent spin two fields represented by the unrelated
pairs of canonical variables (aU.E”) and (AU,B”).

In the gquantum regime the canonical variables become

quantum operators satisfying the following commutation

relation at equal times:

(1 1
[a,,(x) ,_n"'(y)] = - 1[5 5,8, -3 1"17”]83(x-y) (28a)
. ' 1
[A”(x).p'"(y)] = - 1[% 5, - 3 1‘1711]83(x-y) (28D)
Using (27) we have:
Dx a« ] = - i[v PR I T SR ]63(x-y) (29a)
13’ k1 1% 1 11° 1x 3 k171
[A A ] = i[v SR S 2 T ]Sa(x-y) (29b)
13" 1 k' N 117 Jk 3 k1%

The Fourier expansion of the solutions of equation (15)

may be written as:

_ 3, | =~(A) -1kx ~(A)_+ ikx
a, = f dk[e 5 ag, e + 3 Mar | (ke ] (30a)



i (A)

A = J' d3k[é"“ b
1)

=20~

(k)e-lkx + E(M b*

1kx
1) (A)(k)e ]

CBPF-NF-006/91

(30b)

in which kukF = 0 and there is a summation on A from 1 to 5.

The unit polarization tensors e

13
satisfy:

In the frame

~(A)
1]

in which k"

~(1)
i)

~(2})
1

(A)
13

-~ L] L ]
e(A ny _ axx

(K,0.0.K) we have:

V2 (1.1 2,2
-2 [aslasJ - alaj]

- (0 30,
8 =8, 8
E::) = ‘/_g 32(18911
a:j) = 1/_3 83(i61j)

have the same symmetries as

a . and ﬂif They constitute a basis for the 3-tensors. They

(31)
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=21~

From eq. (29) and (30) it follows that the operators aUM(K)

and b(A)CK) satisfy the commutation relations:
[aa(k) ,a"v(k‘)] = 2is,,.(2n") (2k )87 (k-k) (32a)
[bh(k),b*l‘(k‘)] = - zisn\(zua) (2kn)63(k—k‘) (32b)

The presence of a factor 2 on the r.h.s. of eq. (32)

induce us to re-define the operators by setting:

at, (k) = ‘/—’2_’ a, (k) (33a)
\ _ V2
b, (k) = %5 b, (k) (33b)

and correspondent particle number operators:

A, = aj'a) (34b)

B, = b3'b} (34b)
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-22-

Inserting these definitions (33) and (34), and equations (32)

and (30) into the Hamiltonian (16) we obtain:

=_[ k[A +A—B-B] (35)
(2n) 2k el 1 3 1 3

It remains to prove our above assertion that we are indeed
dealing with two spin-two tensors. From Noether‘s theorem we
obtain the generic expression for the density of spin of any

field theory described by Lagrangian L:

A _ _ 8¢

po  SARRH
L

S

Bu a LTI Ba M _ , Buga _ 0 pu B ,Ba M
.[Ao_ R S PR R U Ve S A o_ap] (36)

Thus,
s* =ac AaBH _gc AaBH o A NBR _ o A RBH,

po pRu o oBu  Tp HBo P upp

Using the cyclic properties of AaBu we can write:

- A Bu _ Ay ad )a BH
5 o = 2(Copa" * S *ue)Rs z[coﬂu * S uB]AP (37)
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Now, let us evaluate the spin vector in the x°-direction. We

have:
3 o
sU=Idx s°,, (38)
Using the decomposition (30) into (38) we obtain:

o as 3 + _ at . + - p
512 =21 I dk[[amam a(-)a(-)] * [bmhm b(-—lbl-)]
where:

1l
a = — (a1 ¥ 133)

x) V3

1
b(t] = E (l:)1 ¥ iba)

which ends our proof that out present theory deals indeed with

two spin-two fields.
b) The Fermi Lagrangian

Let us now turn our attention to Lagrangian (23).

We introduce the Fourier decomposition of the field in the
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standard way:
16 3 '
d'k (n) -1 o
LS Inzl-—-_———;——- e aﬂu[a(n,k)e + h.c) (39)
v(2n) Zko
in which k”ku = 0 and e"ﬂaﬁu constitutes a set of unit

polarization tensors satisfying the symmetries (la.b). They
are trace-less and normalized with an indefinite metric

g{n,n‘'}, that is:

(n) e(n‘ Yo B

= LY
e xgu g(n,n%) (40)
g(n,n*}) = - 1 for n=n*'=1, ...,8
such that
g(n,n*) = + 1 for n=n*=29, ,..,10

and g(n,n') vanishes otherwise.
A convenient choice of this basis in a frame which kM =

(k,0,0,k) is provided by the following set:

(1) v3 (.o
3 [5

| o 1 1 =
Bl .9 ] for i=12,3

e B1° 3

(4) _ 1 fe2 1 o2 _ 3 1 .3
easu =3 [6 [aa m& u é ]



(10)
apgu

afu

(12)
apu

(113 _

-25=

N| =
pr——,
[«
-

w
=
o
.4
[ A ]

[ V]
L

1 2 3 1 3 1 2
5[8 g’ u” % da? u]

1 ° 1 1 ° 2 2
2 {8 g’ "l ad u}

N =

N =

CBPF-NF-006/91
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ux‘s 816 u mc‘s B)a

(16) 1 o o3 .1 o o1 (3
Capu T 2 [a w® g’ u % bl u]

From the canonical commutation relations of the field AaBu

and the above expansion one obtains the corresponding c.r. of

the operators a(n,k), indeed, we have for equal times X =Y.

[Augn ) 77 (1) ] =
po‘?«_l AP O _ 1 BA p _ LlO PIA) (3,
[6 GB u 3 aBa u 3 é aﬂs i é [Bwamw ].6 {x-y)
(41)

, s PO P T _ P
in which & aB " 3§ as 8 3 Bs «*
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=-2F -

Then, it follows:

[2tnx) 0" k0] = £ gr,0) 2w 2K ) 8™ k) (42)

The Hamiltonian of the field then assumes the form:

a’k(k )
H=J3fd%c=f—————s .
(2m) °2k _

{_“1-N2-N3-N4-N5 TN TN TN NN P AN P N 4 +N15+N1s} (43)

in which N = a’a and we have omitted the zero point energy.

Therefore, there are sixteen types of quanta, which
corresponds to the 16 degrees of freedom of AGBH'

Let us then continue our strategy and submit the Fierz
field AaBu to an analogous treatment as one does for the vector
field in the case of electrodynamicsm. This means that we
need to impose subsidiary conditions on |¥ > in order to obtain
the physically realizable states of the field.

We decompose the states of the field |¥ > into the product

|QT > X |¢R > such that:

A+C¢Bu’u|.pn > = 0. (44)
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in which |']['R > represents the states that satisfies the above
transverse condition (44) and |'12'T > represents the remaining
states of H#. This procedure allows us to select among the
whole Hilbert space H those states |¥ > which obeys condition
(24) and consequently reduces the freedom of the theory.

There remains to check that these six conditions on the
qguantum states commute with each other. Using the c.r.(41) and
the definitions (24), it is straightforward to show that this is
indeed the case.

Using the expansion (39), the condition (44) takes the

form:

(n) (n} -
[e e T © ols]a(mﬂfn >=0 (45a)

(n) (n) _
[e 1o T © “:’]a(n)wn >=0 (45Db)

(n)
af

A direct inspection on the basis e u then yields:

[/3 a +2a, + a‘]lwR >=0 (46a)
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[zﬁ a, - % a, - a‘] ¥ > = 0 (46b)
[\/:T a, +2a_ - a5] |'1£fR > =0 (46c)
(zﬁ a, + a—;s - as] g, > =0 (464d)
(a, - a_ )|w, >=0 (46e)
(a, +a)ly, >=0 (46£)

Using conditions (46) in the calculation of the expectation

value of the Hamiltonian, we obtain:

a’k k_
<¥| I (21)°2k [-Ns—Ns+Ntz+Nu] 19y
<y |H|y> = [ (47)
<yiy> <w_r| w_r>

Thus, for the theory we are considering, using Fierz variables,
the generalized Lorentz-like condition (44) reduces the theory

to two pure spin-2 fields of positive and negative



CBPF-NF-006/91

energies. This can be set in evidence by just realizing that
the only non-vanishing component that contributes to the mean

value of the spin operator in the x°-direction is given by:

i+ _1 1+ 1 2¢ _2 2+ 2
= - + s
512 2 ,[ dak a(i-)au-l a(—la(--) a(o)a(ﬂ al(-)a(-}]
in which we define:

1 1 -

a(i, = E [aiz + lal‘]

a.z'(’i) =1 [aEl H ias]

vZ .

This then shows that indeed the present theory represents
particles of spin 2 with two independent spin states
{corresponding to helicity states parallel or anti-parallel to

the direction of motion).

4 THE EXTRA SUBSIDIARY CONDITION

Let us pause for a while and see what we have

achieved. From the Maxwellian Lagrangian L = % c aBqu“B“v we
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have arrived (after fixing the gauge) to the Hamiltonian (35)
representing the true degrees of freedom of two spin-2 fields
(see above) of opposite energy. In the precedent (Fermi)
treatment the reduction to the same four degrees of freedom is
achieved only after reducing the Hilbert space (through the
condition AmB”’uM > =0, eq. (44) above). Finally, in order
to reduce the theory to a pure spin two field we must impose
an extra subsidiary condition on the physically accessible
state |y >.

As a criterium to decide which subsidiary conditions one
should impose we examine the behavior of both spin-2 fields

under a space reflection. Actually, these two fields are

an
associated to a negative parity spin 2-field. Thus we are

described by the variables A and A”k. This last one is
induced to eliminate this part of the field once gravity as
electrodynamics is to be described by a positive parity field
(that is a true tensor, not a pseudo-tensor field).

We choose the condition:

_1aB yA o _1Ap 7 18 -
[Eau 3 M o P TRy 5P P u)vpvx]“‘” 0 (48)

where huv = wuv - anv’

In a frame which V¥ = 6”0, equation (48) is nothing but:
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ab _
Uhn)mmlw >=0 (49)

It is obvious that this condition commutes with itself and
with (44) in the Fermis‘s case.

The net consequence of (49) is to eliminate B, and B, from
(35) and N, and Na from (47) which were the remnant of the
pseudo-spin-2 field. The parts of the Hamiltonians that
contribute to the mean value of the energy are reduced to a
strictly positive definite expression for the unique spin-two

field, that is.

a’k
HY = ——— k (A, + A} {50a}
I (211)32]‘o o vt 3

and, for the Fermi‘s case:

a’x
H = k (N + N) (50b)
I (2“)32k0 o' 6 8

If we had imposed instead of (48) the dual part of it,

that is:
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1, LB AP _ 1, *p ¥ LE LA -
[Bau ZA?«BP hmhm 2A,w":hm‘hmvvp]m> 0(51)

We would have eliminated the true tensor part of Hamiltonians

(35) and (47) obtaining negative definites Hamiltonians.

5. CONCLUSION

We summarize our results of the theory of massless spin
two field in terms of Fierz variables and their analogies with

Electromagnetism in the following table:
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Lagrangian |L=-% F*|L = 1 c? L=-% F?-3(88)%|L=+3 C*+3(8R)°
Gauge = = - -
s etry dA=3A SA dw
Gauge A =0 €1=°' BIJ=0
Fixation . ) y - _
_ A ,180 al .j=0' AI ,j=°
First o | . u |
Subsidiary - - A y>=0 A Wo>=0
Condition K aB .u
k] 3 3 9
Hamiltonian H=Jd 'k |H=ld k(A‘+A3+ H=ld K(N_+ H=J‘d2k(;N1-N3+
) (N,+N)| -B,-B,) ] +N,) NZ+NZ) ]
Second l1.Condition(48) ' l.Condition(48)
Subsidiary - -
Condition 2.Condition(51) 2.Condition(51)
1.0 =S’k (A +A,) 1B =fa K (N _+N)
Hamiltonian - 3 P - 3
2.H'=Jd"k{(-B_-B_) ' 2.0H'=fd"k(~N_~-N
1 3 1 3
Spin 1 2 1 2

In the present paper we have then achieved an alternative

description of thae dynamics of spin-two field in a flat

space-time that is completely analogous to

Electrodynamics. The price paid for this is the appearance of
not only one but two spin-two fields with opposite parities
that contribute with opposite signals to the Hamiltonian. In
order to eliminate one of them we have just to suppose extra
subsidiary conditions on the quantum states obtaining thus a
positive (or negative) definite mean value for the Hamiltenian.

Although the presence of a Hamiltonian which is not
positive definite is very unconfortable, because we live in a

Universe where energy is conserved. This could be a nice
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feature of a theory of the begining of the Universe where
energy and matter seem to have appeared from nothing. One
could speculate that the two spin-two fields have created each
other and all matter of the Universe. The appearance of the
first observers (contained in Eaﬂ(48) and BaB(sl) would
eliminate one of the spin-two fields thus arrising two
Universes with positive (and negative) definite Hamiltonians
(where the energy is indeed conserved) that would be completely
disconnected from then on. To develop further this idea we
must construct the non-linear extension of this theory. This

will be the subject of future investigation.
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APPENDIX

Dual Rotation

Maxwell's equation for electrodynamics is invariant under

a constant dual rotation. This means that the dynamics

described by the Lagrangian L =- % Fqu”v is insensible to the
mapping Fuv > Fuv = Cos8 Fuv+ sine Fu'v’ The case 6 becomes a

space-time dependent function. The transformed Lagrangian

*
contains a parity-violating term proportional to F vF“'ﬂ Thus

u
one should suspect that a similar behavior should appear in the
present theory. That this is indeed true is almost trivial.
However, there is an additional property, which does not have a
parallel in electrodynamics, of which it seems worth to
comment.

Let us come back to the definition of the electric and

magnetic tensor Elj and Blj

EU = Clojo (A.la)

1 - l
=C. . ==7%% %y (A.1b)

In the particular gauge we deal with (cf. section 5) we can

write:
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toJo % &u % ﬂu-n.-
ijko = 13k + % ak[i,jl
Define the quantity:
Au = % s(skhmj}
from which inverse we obtain: Amu = - % A”c:m.

Then, it follows that E“ and BU can be written as:

1k

1
7°% u%mix

1]

The quantities o, and nU represent the

(A.2a)

(A.2B)

(A.3)

(A.4a)

(A.4Db)

independent

degrees of freedom of the field and, as we have shown in the

precedent sections, describe two spin-2 fields

(of opposite

parity). Let us now perform a rotation in the plane (a,A) such

that:
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‘ L]
aij _ cos8 s1ine a” (A.5)
AN -sing cosé A

1]

Then, from (A.4) it implies for the electric and magnetic parts

a corresponding transformation:

E® cosé sing | E
o] | o] e
B! -sing cose B

1] 1)

that is,

= cos8 C + sine ¢

> apuv afuv

1
caBuv ¢ apfuy

We can, thus recognize the origin of the dual map of the

field C it is nothing but the rotation in the plane («,A)

aBuv:
described by (A.5).
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