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1 INTRODUCTION

Since Dirac (Dirac 1964) developed his theory for con-
strained systems there has been considerable progress in the
understanding of those systems..The interest on his theory is
iﬁdeed justified not only for the deep iﬁsight it provides
into the conceptual framework but also for the very powerful
techniques it also provides, which can be applied to a very
) broad' class of impdrtant physical systems.

.One point in Dirac's theory that has been the target of
critics by some authors (Gotay 1983, Schafir 1982, Sugano 1983)
is his conjecture that all first class constraints are éene-
rators of gaugé transformations. He also introduced the camipt
of an extended Hamiltonian which includes all the first class
constraints, and generates the dynamical evoluﬁion of the:smg
tem with £full gauge fréedom. In spite of the lack of a proof
of his conjecture (or even a proof that it is not correct)
we do not know of any physically important system to  which
Dirac's conjecture leads to the wrong result.

In order to obtain all the constraints of a theory one
must use Dirac's algorithm which in some cases is very te-
dious. But once all the first class constraints are obtained
one can construct a generator of gauge transformations as a linear
' combination of these constraints, the coefficients of which
are, in principle, arbitrary. Application of this procedure
(Sundermeyer 1982} to the case of Yang-Mills theory ﬁequires
a by hand adjustement of the coefficients in order to match

the result with the well known gauge transformation law for



CBPF~NF-006/87

‘the Yang-Mills potentials.

The exélmple of Yang-Mills theory suggested us to ask about
the degree of arbitrari_nessl of the coefficients which appear
in the generator. Admiting that the evolution of a given dyna-

mical system is generated by the total Hamiltonian H. (we re-

T
mark that this poses no restriction on the dynamics) we com=-
pared two trajectories of the system corresponding to the same
initial data but to different choices of the arbitrary functions
in HT.' Taking into account that the physical states Qf .the syé—
tem cannot depend on the choice of the arbitrary functions, the
| corresponding states along the two trajectories must be‘xelated-
by a gauge transformation. The result of the procedure is a
differential esquation relating the coefficient;s of the primary
and secondary first class constraints. The éenerator so obtained
has been abplied to various systems yielding the correct re-
sults. (For different approaches to obtain the generator of
gauge transformations see (Castellani 1982, Di Stefano 1983).)

The paper is organized as. follows. In Section II we discuss
some aspects of Dirac's theory which are relevant for the following

sections. In Section III we presént our approach te obtain the

generator. Section IV is devoted to an application.
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2. THE GENERATOR .OF GAUGE TRANSFORMATIONS ACCORDING TO DIRAC'S

THEORY

Let us consider the evolution of a mechanical system in
phase space with canonical coordinates (q“,pn), n=1,...,N.We
suppose that the system is singular and denote the full set
of independent constraints (to be specified later on) by Ci =0,
i=1,...,m, ° which define a sub-space M in phase space,
where the motion of the system actually occurs.

According to Dirac's theory the total Hamiltonian for the

system is defined as

Hy = H_ + u*(a,p) 4, | (2.1)
where Hc is the canonical Hamiltonian ¢k' k=1l,...,K, are the
primary constraints, and uk(q,p) are arbitrary functions. The
constraints ¢, constitutes a.sub-set of the constraints C.. In
principle the primary constraints are known once the momenta
are calculated and are incorporated in the Hamiltonian by the
methcd of Lagrange multiplers.

The consistency conditions of time preservation of the
primary constraints, $, = {¢k,HT} = 0,in general lead to the
existence of new const:aints, ¢£, which are called secondary
constraints. (During this process some of the functions u* can pos-
sible be ° determined but whether this happens or not is not
important in what follows.) The set of constraints C; = 0 is
then constituted by all the primary and secondary constraints.

For simplicity we will suppose that this set is first class: The important
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property of this set of constraints is that together with Hc
it constitutes an algebra (denoted by G) under the Poisson
bracket operation., Indeed, one can easily show that for arbi-
trary 1linear combinations 9; of elements of G, with arbitra-
ry coefficients depending on (q'k,pk) ; the following relations
hola(*)

{gi:gj} Ckij(q.p}gk '

{2.2)

{g;/H } = c“;(a,p)g, .
It follows that the set {Ci'.,Hc) constitutes a basis in G. As
generators of infinitesimal. transfomaﬁims the éelements of
| G map Mon MI . When the coefficients in . (2.2) are constants
6 is a Lie algebra to which is associated the group of infi-~
nitesimal transformations on A

Now, given the initial data (qk,pk) ¢=¢ Cthe physicalistate.
of the system is well determined at to. ngever, the time
evolution of the system generated by the total Hamilténian
leads to the appearance of the arbitrary functions in the so
lutions of the equations of motion. This impli.es that there
are several setsof canonical variables at t F t, which corres

pond to the same initial data. In other words, . for - each

choice of the arbitrary functions u® there is an extremal cur

(%)

Instead of H_ we should use H «H _+A ¢ , where X are the
< 0 c nn 11

multipliers which are determined during the consistency pro

cedure. But as we said before this is not important for

our purposes.,
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ve or trajectory of the system, starting at (qk,pk)t_t .

From the physical point of view the choice of the :rbitrg
ry functions is irrelevant in the sense that the corresponding
states of the system must be equivalent. Hence oneis lead to
say that the terms involving the primary first class constraints
in HT generate transformations which do not change the physi-
cal states of the system. In other words, they generate gauge
transformations.

What is clear fraﬁ the above discussion is that not only
the primary first class constraints are generators df gauyge
transformations but also the secondary (first class) ones; Di-
rac conjectured that they should also be included in the Ha-
miltonian and defined the extended Hamiltonian |

H, = Hp + vt (@.p)¥; (2..3)

which generates the evolution of the system with full gauge
freedom. In spite of their completely different physical origin
it is perfectly acceptable from the physical point of widw
that all the first class constraints must be treated on ecual
foot. |
According to Dirac's prescription the generator of gauge

transformations for the system can be written as
G = F'(q,p)s; (2.4)

where Fl(q,p) are arbitrary functions and ($i) denotes all

the first class constraints. A straightforward application of



CBPF-NF-006/87

-

(2.4) to the important case of Yang-Mills theory requires an
adjustment (Sundermeyer 1982} of the "arbitrary" functions at
the final step, in order to recover the correct transformation
law for the gauge potentials, namely, GAE = D"ma(x). {Another
procedure (Hanson et al. 1976) makes use of the equations of mo
tion generated by HE so as to eliminate some of the arbitrary

functions and to identify the remaining ones with A:(x).)Gunkﬁ
By these facts we asked about the degree of arbitrariness of

the fumﬂﬁons Fltq,p) which appear in (2.4) and what we found

to answer this question is showed in the next section.

3 CONSTRUCTING = THE GENERATOR OF GAUGE TRANSFORMATIONS

We are going to compare two trajectories of the same phys-
ical system corresponding to the same initial data, but with
two different choices of the arbitrary functions namely o and
uk + uk , where Ek is assumed to be a small deviation from the
original functions uk. According to the discussion of the prece-
eding section the corresponding physical states of the system
are to be considered as equivalent and so related by a gauge
transformation with the generator of the form (2.4).

Let @ = QEq,p,Qo,u] be any dynamical variable -associated
with the system and Qo its value for the initial data. (For
simplicity we will assume that Q has no explicit time dependence
as this will not change the results). We suppose that its e-
volution is generated by the total Hamiltonian so that for the

k

choice u" of the arbitrary functions we have
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Q = {Q:HT EUJ}

to,H_ +u¥,) (3.1)

Denoting 6 = Q@,p;Qo,u +ﬁ:| + we:also have

Ol

= {o,n, [u+t])= (Q,u [u] + ﬁ’“q:k} (3.2)

On the other hand as Q and Q must be related by a gauge trans

formation it follows that

g = o[u] + (.61 = o[u] + (@,F (a,p)¥;

Qul’ Qlu]  (3-3)

The time evolution of Q as given by equation (3.3) . abqve is
Q =-{Q:Hc} + é_l(qrpl‘;i + Fl(Q:P) {ai'HTEuJ}. .
Thus, Q will be or solution of (3.2) if
#H(q,p1 3, + Fi(q,p (3, . 8, [u]t = @ . (3.4)
! i r i ¥ T- k . -

We now split the set of first class constraints into pri-

mary 'cpi and secondary wz . ones, and write the generator G as

6 =w'(@pv, + Mapre_ - (3.5)

Equation (3.4) is then rewritten as

) o .
duw 2 £ n n = £h
g vy te {wz'Hc} totu {y, .4 1 + e {¢n,Hc} £ ¢ (3.6)
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where in £%¢ we included all terms proportional to the primary
)

first class constraints. Now, the quantities {'pp,'H.k} and {"q’k’Hc}

in the above equation can be expressed'as linear combinations of

the secondary constraints. We write

{'IJ?.'HC} = C‘znwn ’ {¢mec]' = Bn£¢2 .r (3.7}
which when substituted in (3.6) yields
Qﬂiw+“'w+e“6w+m2“{ $. 3} = £Ty (3,8)
at YT U %ne¥y ng¥ s WAt n " ’

Taking into account the linear independence of the primary
and secondary: constraints we see that if the 1ast.term on the
left hand side contains any linear coibination of the secondary constraints,
the coefficient w* will depend on the arbitrary functions'uk. If
this is the case the generator G will. lose its meaning as it
will not generate transformations between .admissible trajec-
tories. On the other hand this term is equal to zero for the
interesting physical systems so that we will discard it. Then
we are left with the following differentiat’ equation' relating
the coefficients of the generator (3.5):

2
dw =
aE * “anta Bty T O (3.9)
This equation shows that the cocfficients. w” , €' are not in

dependent of each other so that given one set the other is de-
termined be (3.9). (In case one is looking for an explicit

solution of ,(3.9) one must remember that the gauge transforma
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tions cannot change the initial data so that suitable initial
. conditions must be imposed.f We remark that we woald not
have obtained the egquation (3.9} if we had used the extended
Hamiltonian as the generator of the dynamical evolution of the

systemn,

4 APPLICATION

In order to exhibit all features of the technidue we de-
veloped to obtain the generator of gauge transformations we
chose a system with somewhat higher degree of complexity Fhan
the average. We will consider a generalized Yang-Mills theory
(Galvao and Pimentel 1986, Galvao 1987) described by the La~-
granglan

1

L = - 1 p2 pHV _ a2p%pa p pfu

4 “uv a ay B a Y (4.1)

where a is a constant and Dﬁ( )8 = 3u( )8 - C:CA:( )% is  the
gauge covariant derivative. *

This Lagrangian is clearly singﬁlar and contains seocond
order derivatives of the gauge potentials, 1n order to set up

a Hamiltonian formalism we used Ostrogradiskii's {(Ostrogradiskii

1850) methods combined with Dirac's theory. Accordingly, we for-

mally consider 2% (x) and ﬁ:(x) Bi(x) as independent va-’
M
riables. The momenta conjugated to these variables are defined

as
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p: ) a;ilw 2% a(aa: ay )~ it a;t
b “o kAb o
and
T
@ HgP
o

which for the Lagrangian (4.1) result in

b = - b 52 k2 0 ol k|
Pa For.: * 2 Ek(Dka )6u + 3k(D}LFb )Ga]
- 232 CrAnd  aMpipd o _aCpAnd b
2a°C,, (22 D°F  “AD'F 8. ~ADF,) - %, (4.2)
0

o A'b o ai

From the above expressions we obtain two primary constraints

¢b _ b _
(1y - "o T 0, (4. 4)
b b k b - : s

By eliminating é:(x) from the canonical Hamiltonian

H = I daxEnafx“ + n3g% - l]
c ata aa -

we obtained
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- 3 -2 p0_c -1 -a‘k kpipa
Jd [Pk Coc buk)B 2az ke T Ta i

X
t

+ a2p F°ip p03 4 1 p2 pil 4 1 p3 poi
i"a "j a 4 "ij7a . 2 "o0j a

(1) (2)
+ C ({x) + (C G+ Bg)(p:—DkH:)] (4.6)

k. c
C Hb-A Fko a

0
becd d

Introducing the fundamental Poisson brackets

@ .,

{p:(x),ABb(x') = GbGECS)(x -x"), {v (x), B (x' )} =~ S:GB 6§ (X -%')

the consistency conditions lead to the secondary constraint

a _ .k, a baCy _ K€ = _
‘44(1) =D (pk +CabcnkAo.) cachkao 0 (4.7)

It is easy to check that the constraints (4.4,5,7) are first . class.

The generator (3.3} and the equations (3.6,7) are now

written as

G ="~ I dz(mbt\bh + élzi)q’:.) (L =1,2) (4..8)
519__ *ow a + ¢2. B, b = 0 {4.9)
dz? (1) ()a

with

a _ L
To BY = a0y, 0 {00y HE = Doy b
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We obtained

a, =C . Al = 0

ab abc ¢ b(l)ab - Gab ' b(Z)ab

It follows that 5?2) H eb remains arbitrary, while (4.9) leads
to

S1yp - T Doy
so that

- byb  _ .o b . .b.b
G = J 200 (gy = D01y + B e(y)

Using expressions (4.4,5,7) we obtained after some partial in-

tegrations and discording some unimportant surface terms:

G = dz(pg - C

C U,k a i b
abcAo“b)D wo o+ j clz'n'aDue

o

ot a : .
+ dz(C,y mFr Yu® (4.10)

It is easy to check that the above generator leads to the correct

gauge transformations for the dynamical variables:

b
SA) = (A2 (x),6} = D (4.11)
b _ _ U a c a _ b :
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One should not be disapointed by the non gauge-covariance of
{(4.12) because this is due to the definition of the variables

a

kl
We observe that for the choice w® - 6%. both Aﬁ and B:txaqg

B

form. under Gd as the adjoint representation of the group. Fi |
nally, we mention that the generators G(w) form or closed al-

gebra.

CONCLUSIONS

We made an analysis of some aspects of gauge transformations :
in the context of Dirac's theory of constrained systems. Ac-
cepting Dirac's conjecture that all first class constraints as-
soclated with a given piysical system generate gauge transformations
but using the total Hamiltonian to describe its dynamical evolu
tion we have been able to construct a genérator for gauge trans-
formations by comparing phase space trajectories with the same
nﬁtnﬂ.data but different choices of the arbitrary functions.
The coefficients of the primary and secondary constraints in
our generator are not completely free but related by a differ-
ential equation . We observe that this does not means any
distinction between those constraints from the dynamical point of view. The
generator‘we obtained obheys a closed algebra and leads to .ocor-

rect results when applied to the most familiar examples.
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