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Abstract

The Þrst-principles Discrete Variational method was employed to study the species formed

by the interaction of an Fe atom and ammonia. Total energy calculations were performed

for several conÞgurations. The hyperÞne parameters isomer shift, quadrupole splitting and

magnetic hyperÞne Þeld were calculated for the ground state found (5E), and compared

to reported experimental values obtained by Mössbauer spectroscopy in frozen ammonia.
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1 Introduction

There have been many theoretical investigations about the nature of bonding of the lone

pair ligands, such as the NH3 molecule, to transition metals [1]. The latter may absorb

ammonia strongly on their surfaces. The main interest is related to the fact that important

chemical reactions involving ammonia are catalyzed by transition metals. On the other

hand, the technique of isolation of atoms and small molecules in frozen gases allows the

use of Mössbauer spectroscopy to probe charge and spin distributions. In this context

an investigation of Fe isolated in solid ammonia has been reported; the reaction product

FeNH3 was identiÞed, and Mössbauer hyperÞne parameters were measured [2].

In the present work, we report a theoretical study for the species FeNH3 by using

the Discrete Variational method (DVM) [3] developed in the framework of the local spin-

density approximation (LSDA) of density-functional theory [4]. We have performed total

energy calculations in order to determine the ground state. Finally, the Mössbauer hy-

perÞne parameters isomer shift (δ), quadrupole splitting (∆EQ) and components of the

magnetic hyperÞne Þeld (HF ) are calculated and compared to experiment.

2 Theoretical Method

In this section we describe brießy the DVM method. The full details have been discussed

elsewhere [3]. The essence of the DVM scheme is to solve the set of Kohn-Sham equations,

which for the spin-polarized case [4] is written in Hartree atomic units as:

[−1
2
∇2 + Vc("r) + V

σ
xc("r)]φiσ("r) = εiσφiσ("r) (1)

where the Coulomb potential Vc includes electron-nucleus and electron-electron interac-

tions and V σxc is the spin-dependent exchange-correlation potential of spin σ derived by

von Barth and Hedin [5]. Both potentials are functionals of the electron density ρσ of

spin σ

ρσ("r) =

N!
i

niσ|φiσ("r)|2 (2)

where the summation in Eq. (2) runs over the lowest n molecular spin orbitals φiσ

with occupation niσ, which are expanded on a basis of atomic numerical orbitals-LCAO

approximation-centered at the symmetrically equivalent atoms. ρσ has the freedom to be

different for the two spin orientations.
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The Discrete Variational scheme leads to a set of secular equations to be solved self-

consistently,

([H]− [E][S])[C] = 0 (3)

where [H], [S] and [C] are respectively the hamiltonian, the overlap and the eigenvector

matrices. All the matrix elements are obtained by 3-dimension numerical integrations.

The integration scheme used here is the pseudo-random Diophantine method [3], except

for the core region of the atoms, where a precise polynomial integration is performed [6]:

this is necessary for an accurate evaluation of the hyperÞne parameters on Fe, as well as

for the total energy.

The functional dependence of the Vc potential on ρ("r) leads to the so-called three-

center integrals, which have a large computational cost. In order to calculate it by one-

dimensional integrations, the exact molecular charge density is Þtted to a multicenter-

multipolar expansion (SCM) [7].

ρ("r) ∼= ρSCM =
!
j

dj

I!
ν

!!
m

Cνλ$mRN (rν)Y
m
$ (�rν). (4)

Here rν is the local coordinate relative to site ν, the summation is over a set I of atoms

equivalent by symmetry, RN are piecewise parabolic radial functions centered at atoms ν

and λ denotes different basis functions of a given ) (j = I, ),λ, N). Theoretically ρSCM

allows calculations of the Coulomb and exchange-correlation potentials as precise as one

wishes; in the present calculations, partial waves up to ) = 2 were employed for Fe and

N , and ) = 1 for H; the least square error of the Þt of ρ was ∼ 0.04.
In the DVM scheme, the total energy E is calculated by a point by point numerical

integration of the difference-energy density [8]

E = $e("r, { "Rν})− eNI("r, { "Rν})%+ ENI (5)

in which a reference system of non-interacting (NI) atoms centered at nuclear sites "Rν is

introduced in order to suppress numerical noise arising from the energy density e("r, {"Rν}).
The basis set is adopted as the standard reference.

3 Results and Discussion

The purpose of the present work is to calculate the Mössbauer hyperÞne parameters for

the species FeNH3. We performed self-consistent calculations for seven conÞgurations.

For each one, the total energy curve covering a wide range of Fe-N distances was obtained



� 3 � CBPF-NF-005/95

in order to determine the ground state. FeNH3 has C3v structure with the metal atom

constrained to lie on the main symmetry axis (the z axis) of the ligand. The ammonia

in the FeNH3 molecule was treated using the experimental equilibrium geometry [9]: N-

H=1.00ûA with an angle H-N-H=107.20. By this procedure, the ground state of FeNH3

was determined to be a 5E with conÞguration:

(↑)9a1
1 10a

1
1 4e

25e2

(↓)9a1
1 4e

1

where the degenerate 4e1↓ orbital is predominantly of Fe (3dxy,3dx2−y2) character. The Fe

populations in all conÞgurations are near 3d74s1, more precisely 3d6.634s1.12 4p0.04 for the

ground state. This means that dissociation would lead to Fe 3d74s1 (5F) instead of the

Fe ground state 3d64s2(5D) [10]. The Fe-N equilibrium distance found for the 5E ground

state is 1.98ûA.

The isomer shift (δ) is deÞned as [11]

δ =
2π

3
Ze2 S !(Z)∆$r2%[ρA(0)− ρS(0)] (6)

where A and S refer to absorber and source respectively, ∆$r2% is the difference in the
mean-square nuclear radius in the excited and ground states of the Mössbauer nuclear

transition and S !(Z) is a factor to correct for relativistic effects. Only orbitals belonging

to the totally symmetric representation of the point group of the molecule (C3v) make

contributions to ρ(0) in a non-relativistic approach.

For the FeNH3 molecule which is symmetrical around the z axis, the quadrupole

splitting (∆EQ) of the nuclear level of spin I = 3/2 of 57Fe produced by the interaction

between the nuclear quadrupole moment Q and the electric Þeld gradient of exterior

charges q is given by

∆EQ = 1/2 e2q Q. (7)

where

q = −
"
ρ("r)(3z2 − r2)/r5 d"r +

!
q

Zq(3z
2
q − r2

q)/r
5
q . (8)

The Þrst term in Eq. (8) is the electronic contribution, which is calculated as a sum

over the 3-dimensional grid, while the second one is the point-charge contribution of the

neighbor N and H nuclei.

The hyperÞne contact Þeld (Hc) computed at the Fe nucleus is given by

Hc = (8π/3)geµβ
1

2
[ρ↑(0)− ρ↓(0)] (9)
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where ge is the electronic g-factor, µβ the Bohr magneton and ρ is calculated according

to Eq. (2). The dipolar Þeld HD is deÞned as [12]:

HD =
1

2
geµβ

"
[ρ↑("r)− ρ↓("r)](3z2 − r2)/r5)d"r (10)

where the densities are computed according to Eq. (2) and the integral is a sum over the

3-dimensional grid. Therefore, the total hyperÞne Þeld HF is given by the sum of the two

components:

HF
∼= HC +HD.

The orbital component of the hyperÞne Þeld was not considered here.

In Table 1 can be seen the results obtained for the Mössbauer parameters described

above for the seven conÞgurations examined, being the second of them the ground state

conÞguration. To determine δ, we Þrst performed calculations for free Fe atoms and

ions, for which δ was measured in frozen gas matrices [13], by using the atomic Density

Functional self-consistent method, in order to obtain

α =
2

3
πe2ZS !(Z)∆$r2% = −0.228mm/s.a−3

0

and thus calculate the isomer shifts in Table 1, using this value of α and the molecular

values of ρ(0).

In Table 1 we also give the values of ∆EQ. Since the sign of the experimental value

was determined [2], this constitutes a reliable test for the 5E ground state found. We

used here Q = 0.20b [11]. It may be seen in the table that the ground state conÞguration

(2) is indeed the only one for which the computed value of ∆EQ is near the experimental

value in both sign and magnitude, all the other conÞgurations giving values very far from

experiment.

The hyperÞne Þeld HF shown in Table 1 is the sum HC+HD. Since it was not possible

to measure the sign of HF , from the experimental point of view two values are equally

possible: +800 or -900 kOe [2]. We can observe that positive Þelds HC are related to

conÞgurations where the 10a1↑ (Fe 4s) is occupied.

4 Conclusions

We have performed self-consistent local spin-density calculations for seven different con-

Þgurations of the FeNH3 molecule. Total energy calculations indicated that the ground

state is a 5E corresponding to conÞguration (2) in Table 1. For this conÞguration the
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computed values of the Mössbauer hyperÞne parameters δ and ∆EQ agree well with

the measured values. The calculated value of the magnetic hyperÞne Þeld found for the

ground state is large and positive, due to the occupation of the 10a1
1 (4s↑) orbital. The

magnitude of HF is somewhat smaller than experiment.

ConÞguration δ ∆EQ HC HD H
(c)
F

(mm/s) (mm/s) (kOe) (kOe) (kOe)

(1) (↑) 9a1
1 10a

1
14e

25e2 +0.74 +0.16 +1224 +94 +1318

(↓) 4e15e1

(2) (↑) 9a1
110a

1
14e

25e2 +0.42 -1.66 +539 +29 +568

(↓)9a1
14e

1(xy,x2-y2)

(3) (↑) 9a1
110a

1
14e

25e2 +0.43 -0.59 +552 +66 +618

(↓) 9a1
15e

1(xy,x2-y2)

(3�) (↑) 9a1
110a

1
14e

25e2 +0.32 -7.27 +438 -167 +217

(↓) 9a1
15e

1(yz,xz)

(4) (↑) 9a1
14e

25e2 +0.62 +1.06 -1030 +11 -1019

(↓) 9a1
14e

15e1

(5) (↑) 9a1
14e

25e2 +0.78 +6.95 -1282 +265 -1017

(↓)9a1
15e

2(xy,x2-y2)

(6) (↑) 9a1
1 10a

1
14e

25e2 +0.77 +6.81 +1193 +333 +1526

(↓) 5e2(xy,x2-y2)

Experimental +0.67(a) -2.0(a) + 800

or

+0.60(5)b |1.90(5)|(b) -900(a)

Table 1: Calculated and experimental Mössbauer hyperÞne parameters of FeNH3, for

calculations at the equilibrium distances.

a) From Ref. 2; δ relative to Fe metal at room temperature;

b) From Ref. 14; δ relative to Fe metal;

c) Theoretical values of HF = HC +HD.
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