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Abstract

It is shown that in the Higgs and Chern-Simons-Higgs systems the ‘self-duality’ con-
straint on the scalar field (combined with the equations of motion) by itself leads to a
general form for the potential. In the limits of the Chern-Simons coefficient £ — 0 and
K —> oo one obtains the previous special forms of the potential. In the latter case, it is
shown that the quantity In|a.|2, where a is the bosonic field, satisfies the Liouville equation.
The supersymmetric extensions of the theories written in terms of superfields is considered.
A ‘supersymmetric self-duality’ constraint on the matter superfield is proposed which con-
tains the bosonic one and it leads to the specific forms of superpotentials without invoking

arguments based on an explicit N=2 supersymmetry.
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1. In (241) dimensional spacetime the possibility of including in abelian Higgs model
the Chern-Simons (CS) term? has generated a great deal of interest. It was noted? that in
the Chern-Simons-Higgs (CSH) system, the energy functional obeys a Bogomol’nyi-type®
lower bound for a special choice of the Higgs potential. The bound is achieved if the Higg’s
scalar field ¢ satisfies the following first order self-duality condition?

Dya = —iDqa, or Dia = —ie‘ij_,-a, (1)
where Dy, = 8, +tevym, m = 0,1,2 are the spacetime indices while ¢ = 1,2. Qur metric is
Nmn = diag(—1,1,1) with €2 = "% = 1. We pet

a= e p} (2)

and substitute in (1). The spatial part of v,, is then found to be

1 ..
v = —fw — zebajlnp. (3)

The electromagnetic field is then given with the aid of vy, as

1
B = fa= _é_évz Inp
Ef = 8" 4 8%°. (4)

The critical form of the potential can also be obtained by directly solving® the eqs. of
motion with the aid of the self-duality condition. This procedure can aiso be extended to
the scalar superfield, a supersymmetric self-duality condition® postulated, and the egs. of

motion solved for the supersymmetric potential (Sec. 3).

2. The Lagrangian for the Bosonic Chern-Sirmons Higgs system is

£ = ~(D'a")(Dia) - V(jal?) = T ™ o1fun — = fimf™, (5)

where D,, = O — ievy,. The equations of motion are derived to be
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.
D'Dia = V'(jal)a, (6)
and
- mf"" + g ‘lmn.fmn = jt: (7)

Here V'(|a|?) = 8V /0|a|® and j* = ie(a*D'a — aD'a*) is the Noether current, 8;5'(v) = 0.
For static configurations eq.(6) reduces to (1,7 = 1,2)

DiDia = (V' — e*vp?)a, (8)

and we find from eq.(7) corresponding to I = 0,1 and 2, respectively,

8iBivg + K f1a = 2e?vg |a|®, (9)
& (frz + wvp) = 41, (10)
81(f12 + &vo) = —Ja, | _ (11)

where the gauge 8v' = 0 is taken.
H we impose the self-duslity condition (1),

Dia = —ilqa and Dya* = iDya* (12)
then eq.(8) leads to
e*vo? + efia = V'(jaf?). (13)
We also obtain
J1= 130,|a.|z and j2 = —edy |a|’ (14)

while from (10) and (11) it follows that
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f12 + xvy = ¢(af* ~ C?), ' (15)

where C is a constant. Combining (9},(13) and (15) we derive the general result

V'(lal*) = e*v0® + = (2¢*|af” - & )uo (16)

where vy is given by

(5 (2e%]al* = ) + 1Jo0 = (lof? - ©%) (17)

Several limiting cases may be considered. When x — 0 (no Chern-Simons term) the

eqs. (9), (13) and (15) lead to

(2¢*|af* — 8})vo =0,
V'(laf*) = e¥(laf* — C?) + '] . (18)
For the choice vg = 0 we obtain V = (e?/2)(|a|* — C?)2.
In the limit e —» o0, & — oo such that (e?/x) — finite the terms originating from

the Maxwell term in the eqs. of motion drop out. We find from egs. (9),(15) and (16)
efiz = 2(e?/x)(em)lal’, evo = (?/x)(|af? ~ *) and

Vi(lal) = (*/x)*(lal* — C*)(3la]* - C%) (19)

leading to

V(lal*) = (e /x)*(Jal" - C?)*[af* (20)

which is seen to saturate the lower bound of the energy functional. On making use of

¢q.(4) and setting p = ezp(x/2) we find that y satisfies the following differential equation
with the choice C =0
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Vix = 8(e? /)X (21)

which is the Liouville equation®.

It may be worth remarking that in the general case if we impose in addition to the
self-duality condition the ansatz (2e?|a|? — 8?)vg = 0  then from egs. (15),(16) and
(17) we are led to  evo = {e?/x)(|a? — C3), fiz=0and

V(laP*) = 3(¢* /) (lal* — €% (22)

which, however, does not saturate the lower bound. A different and more complicated

potential is obtained if we impose, say, the ansatz 87vp = 0.

3. Consider the Supersymmetric Chern.Simons-Higgs system. The gauge vector po-

tential in the case of 2+1 spacetime dimensions is contained in a Majorana spinor connec-
tion superfield

I'*(z,0) = x*(z) + Jﬁ(%eﬂ“u(z) + APl (2)) + iB6n* (), | (23)

where % = A%(z) — %(—rlthx(z))". Here the Majorana 2-spinor field A(z) is the super-
partiner of the gauge field v(z) while the spinor x(z) and scalar v(z) are auxiliary fields.
We use a Majorana representation for gamma matrices with (v°%5) = ios, (v!%4) = o1,
(v¥@g) = o3 and define (*F) = iy, (eag) = —io; where a,8 = 1,2 are spinorial indices.
A Majorana spinor then has real components. The spinors with lower index carry an up-
perbar for convenience with P4 = e,g9® and it is easily shown that $,£* = ¢ is Lorentz
invariant.

The generator of N = 1 supersymmetry transformations, Q=, is given by iQ® =
(8/88.) —i(v'8)*8, while the covariant spinorial derivative is D™ = (8/88,) +i(v'8)*8,
and D, = €q9DP. They satisfy {D,,D?} = —2iy# 8,

The field strength superfield is defined by
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Wa(z, ) = %D,D'*rﬂ,

1 .
= 2%(2) + S0p(¢™ fim Y= + ZB8(r' BN (24)
where fim = 81vm — O v and the gauge superfield action is

L=} / Sad' W W= =1 / &z DD(WW)|omo (25)

The bosonic CS term is found to be contained in W = I'+'§T — T DDI" and the

action for the super CS term is written as

I, = “% / Pad6TW = —g / &3z DD(TW)|o=o. (26)

Its expression in terms of the component fields is easily obtained in the supersymmetric

gauge DI" = 0 which corresponds to setting v = 0, o' = 0 and x = 2 (Y'9A).

The matter superfield is a complex scalar superfield

®(z,0) = a(z) + ify(z) + i00f(z). (27)

Here a(z) is a complex scalar, ¥*(z) its complex superpariner and f{z) an auxiliary

complex scalar. The gauge covariant spinorial derivatives may be defined to be

V2@ = (D 4+ eI')®,  V* = (D™ — eI'™)@". (28)

The following closure relation

{Va, VP} = -2y, Vi, (29)

where Vi = (8 + el'}) and Iy = %D-nI‘, is easily established. The Bianchi identities are
satisfied due to the identity DW = 0.
The matter action with minimal coupling is
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Im = / d*zd*6 (%é’,i‘V“tb +iV(|8}%)), (30)

where V is the superpotential.

From the total action we obtain the following equations of motion

19aVo8(z,6) = V(8 ]2, (31)

(YaW)* — kW= = (3" V23 - AVl A% | (32)

and the conservation of Noether’s current requires

Da(®*Ve® — 3V=%%) = 0. (33)

We adopt the supersymmetric gauge DI' = 0 and consider static configurations. The

self-duality constraint on the matter superfield now takes the form*

Ve =i(y'V)*®,  U2@* = —i(y"V)=2". (34)
The eq.(33) is easily seen to be satisfied and we derive from eq.(32)

o - ?;V'um’), (35)

where I* = £ D'T with { = 0,1,2 and the supersymmetric gauge corresponds to ;I = 0.

In the absence of the (super) Maxwell term we derive from eq.(32)

xPi3 = —gz'w]qq’, (36)

xTo = ie(}|* — C%). (37)

where Fy; = (§;T; — 8,T'1). From eqs.(35) and (37) we derive immediately the specfic
superpotential
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| Vel = <8 - c*). (38)
For the case of vanishing « the superpotential corresponding to the self-dual solutions is
found by following a similar procedure. In both cases the supersymmetric actions contain
the results of the purely bosonic theory as is easily shown by integrating the superfield
action over # and eliminating the auxiliary fields by using their eqs. of motion. The
same is true of the supersymmetric self-duality condition when analysed in terms of the

component fields. We obtain these results without the arguments for invoking an explicit

N=2 supersymmetry of the action”.
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