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ABSTRACT

In this paper we present, through a familiar example (é-function
potential in one dimension) the analytic properties of Jost functions
associated with fourth order equations.

It is shown how_to construct the Jost functions and -the two discon
tinuities matrices assoclated to the line of'singularities.

The latter divide the complex k-plane in eight regions of anali-
ticity. One of these matrices is related to the asymptotic behaviour
of scattering state. The other is not. Both being necessary to solve
the inverse problem. Besides the usual poles related to bound states

there are also other poles associated with total reflexion.

Key-words: Field theory; Analiticity properties.
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1 INTRODUCTION

The possibility of using higher order equations in particle phys
ics theory has been considered, time and again, but the difficulties
found in the process of interpretation are almost unsurmountable and
such equations are therefore discarded in favor of second order ones.

The reasons are indeed very good. Among them we find: the energy
is in general not positive definite. The usual causality relations are
not satisfied. The "S matrix" lacks unitarity. The Hilbert space of
quantum states has indefinite metric[1]...

However, sticking to second order wave equations does not solve
all problems. Notably, gravity theory refuses to be consistently quan
tized. Furthermore, the consideration of supersymmetry in a space-time
with a number of dimenéions greater than four (the "Kaluza-Klein" pro
gramme) can lead to higher order wave eqmﬂﬁ0n5[2][3], so that the di
mensionality of space could be related to the order of the equations
of motion.

To our opinion, such a relation and the possibility of reducing
the degree of divergence through the use of higher order equations
justify the efforts expended in trying to understand and clarify the
physical interpretation of the theory.

In ref. [4] we have stated in a brief form, the canonical methods
necessary to construct the field tensors and the Heisenberg guantiza
tion of the fields obeying the higher order equations. They are e-
quivalent. to the results one obtains by using a “"Schwinger action in
tegral®” method[sl. Nevertheless, nothing is said there about the e-
quations and their solutions.

In the present paper, we take a fourth order sationary “Schrodinger

equation" in one dimension and study its solutions, in particular for
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discontinuous step potentials, square barrier and "S§-function poten-—
tial".

The motivation is to examine the difficulties in the simplest cases
and to learn there how to deal with them in more realistic examples.
We discuss the generalized Jost functions[6] related to the problem.
We think that these methods and results, little known among physicist
will be better understood through the discussion of a very simple ex
ample where the physical implications are more clear. For the comple
te bibliography we refer to [6}1.

This study shows that the simple structure of the “transition ma
trix" for the second.order case is here changed into a set of discon
tinuity matrices. One of them is similar to (and has the same origin
as) the second order one but the others are new.elements;notcnnunﬁed
in the scattering states, which cannot be ignored.for the physical
completeness of the théory.

In other words, knowledge of the usual scattering matrix is not
enough for the determination of the potential, i.e. for the solution
of the inverse problem. A fact that is related to.the lack of unita-
rity of the usual naive scattering matrix.

In §2 we introduce the equation and find its solutions for step
potential. In §3 we do the same for a §-function potential. In §4 we
introduce and compute the four Jost functions related to the potential
of §3. In §5 we define and calculate the "Jost functions" and the dis
continuity matrix for the fourth order case. Ih §6 we evéluate the
isolated singularities. In §7 we discuss the inverse Gelfand-Levi-

tan Marckenko egs. for this problem.
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2 "SCHRODINGER" EQUATION
We shall consider the following equation

d‘l
dx‘l

¢ + m*(V-E)¢ = 0 (2.1)

We can divide (2.1) by m" and consider only adimensional gquantities
mx > x3 m_l(V-E) +V-E. In what follows we take then (2.1) with m=1,
We begin by solving (2.1) for the case:

a) v=20 x<0 vV = constant >0

-y

E >N x>0
An exponential function ei¥x 4 a solution of (2.1) if
K' = E in x<0 (2.2)
and

K" = E-Vv in x>0 (2.3)

There are then four solutions in each region. Writting et ¥ for a par

1/4

ticular solution, say K=+E ' ° we have the four solutdons:

and

L]
1€ : Bze F B3e F Bae : K! =(E4n1/ﬁ (2.5)
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There are asymptotic and boundary conditions. The latter are dictat
ed by the differential equation (2.1). As we have a fourth order e~
quation, we must impose continuity of the function and its first three
derivatives; (provided V has no d-function singularity).

If we want to describe a situation in which a plane wave is in-
comming from the left with unit amplitude (A1=l) and then isreflect-
ed and transmited (at x=0) as bounded waves (A4=0: B3=0), with no
other plane wave incoming from the right (Bz=0), we have the solu-

~tion:

¢ {x)

"
+
by

,© + A.e for x <0

i
w
®
+
w
®

¢ (x) 1 4 for x>0 (2.6)
With the boundary conditions:

_1+A2+A3= BL+BA'

: . = ' Kt
iK'-iK§2'bKA3 = 1K Bl K B4

(2.7)
2 _ g2 2 - _RKv2 '2
-K? -K*a, + K*A, = -K'?B, +K B,
3 3 13 _ 3 43
-iK® +iK°A, +K A, = -iK* B, -K' B,
The solution of the system (2.7) is: (y =E§J
Az = i(;fy)(l-;Y) i A3 = glf+){%fg) i By = ———g—— ; B, = -2(l-y)
(1+y) (l+iy) (1+y) y{(1l+y) y (1+y) (1+iy)
{2.8)

It is easily checked that, to the equation (2.1} it corresponds the
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- 5 —
conserved current: (V-E Real)
5 - P AP - Ll a’¢ _ 4x 200 _ d’¢* d¢, (2.9)
dx? dx dx? dx? dx ? ax

=0

Using (2.9) for the solution (2.6) we obtain:

L.
|

= 4K3(1;ihé|2) for x<0
| - (2.10)
4K'3|Bllz, for x>0

L
1l

The exponentially decreasing "waves" with coefficients A, and B, do
not contribute to the current.

Obviously, wé can define a reflexion coefficient
R = |a,|* (2.11)
and a transmission coefficient
T - (3)°]p, ]2 (2.12)

With the values given by (2.8) we have

== . g _ 4y (2.13)
(l+y)? {(l+y) 2

And, of course, R+T=1.

Case b) Q <E <V = cte {for x > 0)

v=_0 {(x <0)
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The solution to the left of the origin is again given by (2.6) (x <0).

Instead, for

x>0 we take K' = (v-E)L/% (2.14)
and define the four quartic roots of -1 as:
€ = o' % 2 S €, = 1+ ey = 1-i €, = zi-i (2.15)
vZ V2 V2 : 3

(2.5) is then replaced by

and the ceondition of boundedness reduce the solution for x>0 to the
form

E-IK':: _ S4K'x
¢(x) = B,e + B,e r X>0 (2.16)

1 4
which describe an exponentially damped wave, so that the transmitted
current is 2zero.
The coefficients A, and B, can be found as in (2.7), (2.8);: but
we prefer to consider here now the special case of an infinite wall
(V>e),

In such a limit we easily get:

1+ 1
I =

2 1 -
A =ii__1'|-0('y_, *
(2.17)
1-i

. L 1
Bl = 2 + —y—g'l-O(-y—a-)

1
Ba=-—§—+0(;§) /
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We see that on the wall, for x--0
vio)y »o0o I (o) »o0 (2.18)
dax *

while the second derivative tends to a finite value (see 2.16 , 2.17).

3 THE {-FUNCTION POTENTIAL

By a similar method we can solve the problem of a rectangular po
tential barrier or the square well potential, but for our purpose in
this note it is better to consider a limiting case; that of the 8

function potential

" .
89, a6(x)¢ = Eé (3.1)
dx'-l

By integration around the origin we deduce the discontinuity

of the third derivative

ol _ &l 40
dx? 04 dx?| -

while the function itself and its first and second derivative must
be continuous at the origin.
If we look for a solution of {3.1) which represents an incident

plane wave from the left, and it is bounded everywhere, we are led to:

1l
®
+
3
+
t
©
»
A
Qo

¢ (x)
{3.2)

n
.
®
+
o
1t
]
v
)

¢ (x)
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The egs. resulting from the conditions at x=0 are:

1+4A+B = C+D

i-iA +B = iC-D
{3.3)

-1 -A+B = =C 4D

-1 +1iA+B = =iC ~-D +-2 $(0)
. K3

The solution of this system is:

A--—3%8_ . B_ian Cc<1+4A D=iA-=B (3.4)
4K3-a+ia

The pole of A at 4K*=a(l-i), which eliminates the first exponen-
cial in (3.2)corresponds to a bound state only if the remaining expo-
nential functions decrease for x »*«, From an analysis of (3.2) we see
that this possibility actually occurs only if a <0; i.e. if the §

- function potential is atractive.

K = (121)1/3 I¢d  c0r 2 <o
2/2 V2

4 JOST FUNCTIONS

We are going to define the "Jost functions" of the problem (see
ref. [6] and the references. there contained) as four linearly inde-
pendent solutions of the fourth order equation. These solutions are
to be ordered according to the asymptotic behaviour as x »ze ([6]).

Outside the region where the potential is felt (asymptotic re-

glons) we can write(2.1)or {(3.1) simply as
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4
d’y = khﬁ? E=k" (4.1)

For any complex k there are four solutions

elkx , e—lkx , ekx , e—kx (4.2)

The behaviour for large x depends on the real part of the exponent.

We take as the first Jost function fl, that soclution of (3.1) which
for x +-» has the greatest rate of decrease. The equation fixes the
rest of the solution. The second Jost function fz(x) has for x-+-=
the exponential with the second greatest rate of decrease. As any ad
" mixture with f1 satisfies'also this requirement, this dees not £fix
the solution. As, in principle, f1 will have the greatest rate of in
crease for x ++», we are free now to impose for f2 the extra .condi-
tion that this solution shall have the second greatest rate of increase
for x-*éw, f3 will have the next rate for x +#« and similarly forf4.

In order to see more clearly how this procedure works in an ac-
tual case, we are now going to take the usual one dimensional second
order Schrodinger eq. and construct the two Jost functions, defined
according to the procedures just explained.

The Schrodinger eq. reads

. 2 .
@z 2. asxy = By (4.3)
dx?
Asymptotically
32
-4 kzy (4.4)
dxz

The two exponential solutions are
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ikx -ikx

e e (4.5)

Let us now construct the two Jost functions. In the upper half plane

of k, we have:

fltk,x) = e-lkx x <0 Ae"ikx-+Beikx x>0
(4.6)
£, (k%) = ¥ Lce™EX 4 .0 pelk* 450
_ 2k+al _-ai _a 21k
with A= B=2x C=7ixa P-=37ik=a

In the lower half plane, we have:

[
w
A
o
>
@
w

fl(k,x) = eikx

£,(k,x) = e 1KE Laietkx Lo ple kX ¢y

1 - 2k"‘ia ] - =< | - | I
Al = =y— B =3¢ C =33z D' =3x1a

The Jost functions are then well defined in the upper half plane
of k (4.6) and in the lower half plane (4.8) but all along the real
axis of k they have both the same type of behaviour at x = i~. In this
sense, the real axis appear as a singular axis where we can define two
limiting functions according to the way we take the limit comning from
above or from below. |

For reasons that will become clear later we Jivide (see[6]) the real axis
in two rays, K>0, K<0 K-=Real (k). |

For R{(k) >0 we take fI or f; as the limit from above of (4.6) and

fI or f; as the limit from below of {4.8). In the ray R(k) <0 we de-
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fine £] and £, as the limit from below of (4.8) and £ £, as the 1i

mit from

of

above of 4.6. Note that + or - do not refer to the sign

f but rather to the sense of rotation in the complex  k-plane.

We call "+" the clockwise rotation and - the anticlockwise rotation.

Bxolicitly:
£1(K, %) = e KX v 0 e LBe X x>0.(k>0)

| (4.9)
£1(K,x) = e, x<0; ae™ e ; x>0 (K20)
£5(K,x) = e F4ce™ , x <0 ; pel®™ |, x>0 (k>0)

_ (4.10)
£5(K,x) = e M icre™  x<o0 s p'e”t®* x>0 (x <0)
£1(K,x) = e, x<0; Atei¥® Lp1emiKX 50 (kK >0)
£1(K,x) = e %, x<0 ; ae X L ge™™ x>0 (R <0)
£5(K,x) = e " Face®™ , x<0; D™, x>0 (k>0)

] . . {4.12)
£5(K,x) = e Face™* | x<0; pet™ , x>0 (K<0)
The functions £] and f; are solutions of the differential eq.

(4.3)but as this is a second order eq., there must exist a linear re-

lation between the two solutions "+" and the two "-". They are

re—-

lated by a "transition matrix" A:

Af (4.13)

From{4.9) to{4.12) we can get the matrix A which has the form
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1 e 0 1 0 1
A = wgr*  lego* 1 o0/ 7 .4 1 0/ - (4.14)
with ‘g = —=2——  for any K (4.15)
2i|K|+a ' -

The matrix A (or 5) has only one independent element. To see how this
element can be physically measured, we note that (4.13) and (4.14)

give:

£] = £, + af] (4.16)
f; represents a plane wave {ncoming from the left and two plane waves
incoming and outgoing from the wright. Eq. (4.16) tells us that such
a situation can be achieved by carefully superimposing f; which is
an experiment of reflexion and transmission of a wave incoming from
the left and fI which is a similar experiment with a wave incoming
from the right.

It is then easy to see from (4.16), (4.9), (4.11), (4.12) that

o is minus the reflected amplitude
o = -C' and of course (4.17)
the reflexion coefficient is
R = |a|?

The matrix A can be experimentally determined by measuring am-—

plitude and phase of the reflected wave.
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5 JOST FUNCTIONS FOR THE FOURTH ORDER EQUATION

We construct the Jost functions, according to the rules given in
§4. For each value of E we have four roots of the equation E=k‘ name

ly, aik, where Ly i=1,2,3,4, are the four quartic roots of unity
(+k, -k, ik =ik) {(5.1)

If we order the exponencials of (4.2} according to the behaviour
for large x, there are obvious ambiguities when the real part of two
of them are equal, and this happens when the roots are on four lines
given by the real and imaginary axis, and the lines at 459 degrees
with them. This divides the complex k plane in eight "oétants# where
the order of the functions is well defined according to the given rules.

When k (complex) is in a given octant, we define'di such that
Real(alk) ?Real(uzk) >Real(a3k) >Real(a4k)  {5.2}
We note also, thgt in general
and a, = =0y {5.3}

The Jost functions for any coctant, are then:

o, kx akx akx -0 kx qzkx_e"‘zk"
.fl(k,.x) =e ;X <0;e —m[al(e -e ) +o.2(e- ), x>0
alkx o _
azkx aule azkx a ' azkx -azkx = kx
£f.(k,x) =e x<0 ;e - a, (e - - ], x>0
2( +X) + qksiaar: ; ZE;:EEI[ 2( ) 1 1
-0, kx . eMKX o gO2kx G, kx | _ O e'alkxﬂéa e 2kx
£, (k,x)=e 2 + al’l e + 2 —l-,XVCO ;e 2 + a(1 5 2 3 ) , x>0
3 4k —a(almz) 4k -a(u.1+0.2
-0, kx o, kx o.kx -0 kx 3 =0, kx
1 a 1 2 & 1
fa(k,x) =e ¥ 4]-:_3—&5'; [ale +u.2(e -e ), x%x<0; __4k3-ad1 e X0

{5.4)
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It is easy to see that

@, = (-1)" - (5.5)
where n=0 for the first and eigth octants, n=1 for the second and
third octants, n=2 for the fourth and fifth octants and finally .n=3

for the sixth and seventh octants
m

where m=0 for even octants (second, fourth, etc.) and m=1 for odd oc
tants. .

As in the second order case, we can define the "+" and "-" Jost
functions on the rays dividing two consecutive octants.

The "plus" functions are those obtained as the limit of (5.4) taken
in a clockwise sense to the above mentioned rays. The "minus" func-
tions are those obtained in the anticlockwise limit.

The values of o being those corresponding to the octant from
which the respective limit ig taken.

0f course, the four plus functions and four minus functions are
solutions of the same fourth order linear differential equation, so
ihey must be linearly related.

Af (5.7)

rh
(]

Due to the properties of the solutions for values of k that differ by
‘a factor of i, the matrix A has the same value for rays of the same
parity. Of course, this can be explicitly verified.

S0 we need only:to consider the ray number one for whichk is real
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and positive (k=K) and the ray number two for which k=-%a% K (K=re-
al and positive).

For the first ray the matrix A takes the form:

1 0 0
A= o 1 o (5.8)
0 =a* l-co%”
B 0 0
where
4 = ——=id (5.9)
4K%-a (1+1)

((5.8) and (5.9) are valids for any odd number ray). For the second
ray we have (k=K(%%%)

1 B o o
iy* leify* 0 O
A —_ (5.10)
0 0 iB*  l+iyB*
iB = v = 'f§+i) (5.11)

4R { a

{The equality y=iB only occurs for special cases) and .the . values

(5.10), (5.11) are valid for any even number ray.
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6 ISOLATED SINGULARITIES

The lines dividing the different coctants in which the Jost func-
tions are well defined, are not the only singularities. The defini-

tion (5.4) shows that the points where

k3 = aa, (6.1)

and those for which
3 _
4k°® = a(al+u2) (6.2)

requires special attention.
Let us first take (6.1). For each value of"&.1 there are three va
lues of k for which (6.1) is satisfied. The root that falls in.an oc

tant for which o, has the chosen value, is a singularity of the cor-

1
responding Jost function.

We define

K = + (131)-”3 (6.3)

The octant corresponding to the three roots of (6.1) is then de-

termined by the three values

E = QSga.al (6.4}
i.e. £ = Wﬁ'if a0 (6.5)

e:=9'?i: if a<0 (6.6)
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The interesting roots are:

. 2 . 2
ism -izn

WM =(1;e 2 ;e 3
1 I - T

=1 = (-1; e 3 ;e 3 )
o 5 (6.7)
1.-6— 131’[

Vi = (-i; e ;e )

.

¥-i = (i ; e 6; e 6 )
One then can see that when a <0 there are no rcot for k that corre-
sponds. to the given value of oy while if a >0 one has the following
roots
k = Ka¥* (6-8)
With K given by (6.3)

K = 4 (]%_[)1/3,

With (6.1} and (6.8) the Jost function given by {5.4), have the form

(near the pole):

£, = " x<0 ; e 4+ 28inkx x>0 + 0 (k-Ka¥) )
aa;
f2 5 — f1 {(6.9)
4k3—aa1 1
a +Kx 1'
=2 f. = -2 + 2s8inkx , x<0 :-e_Kx x>0
a, 3
-ao. -ao o
fl. = ..._.._2__. f3 = _.....l_.... ....g.. f3
4k‘i-an 4k*-ac, o, - )
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The first Jost function in (6.9) corresponds to a case of total re-
flexion from the right. Note that for the value (6.3), the reflected
amplitude determined by (5.9) gives a=l. f3 on the other hand, re-
presents a case of total reflexion from the left. In both cases there
are evanescent tales at both sides of the origin.

We then see that, up to O(k-ch’{) , the Jost functions are not 1li-

nearly independent. We have the relation

r..
£, = —2- £, {6.10)

' k_gqr  J
k Kal.
where Pij the matrix of residues at the pole, can be computed from

{(6.9) (only r,., and P43 are different from zero).

21
Let us now consider (6.2).

k? = 2 1 2 _ g3 2 sga {6.11)
2/2 /2 /2 .
where now
x = +laly1/3 (6.12)
2/2

ﬁ11+a2
The three roots -575—-are:

. . 7 ]
ET R S F A (6.13)

"
T
®
-
®

When a>0 there no roots for k that correspond to the given value of
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IR Ty while if a<0 one has
af+al _
kﬂK(T) {6.14)
with K given by 6.12.
The Jost functions are then given by
o, kx a, o kx a - kx o a.kx -o.kx
1 2 1 ' 1 1 2 2 2
f. =e ,X<0; —=— e 4 rm——— e - (e -e ) x>0
1 a1+a2 a1+a2 al+a2
o a kx o, kx -0, kx o - . kx
£.=-Lel 4e? ,x0;e 2 +1xe 1 |, xo0
2 a o
2 2
ao
£, 5 — 2 £,
4k —a(a1+a2)
o o, kx -0 kx o kx —-a, kx -0 kx a -0 kx
f=—1e1 +e1-|-e2 -ez;el-n-—le]' x>0
4 0, o,
x<0
{6.15)

The second Jost function in (6.15) represents a bound state as the ex
ponential functions, due to (6.14), are decreasing towards both sides
of the origin.

Again we can write

£ = atvag £, (6.16)

where now only r32 is different from zero and its value can be com-
puted from (6.15).
7 The inverse problem.

In §5 we havé defined (following ref. [6]1) and classified the four
Jost functions according to the asymptotic behaviour for x+i= of ii-

nearly independent solutions of the wave equation. Those functions are
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analytic functions of k except for singular lines and points. These
properties are genergl and independent of the potential in (2.1). This
is true in particular for the division of the complex k-plane in oc-
tants within-which the Jost functions are analytic. Different poten-~
tials lead to different traﬁsition matrices on the singular lines and
also to different isolated singularities. We have computed these ma-
trices for the simple case of the d§-function potential §5 and §6.
The structure of the wave equation determines the general analy-
tic properties of the Jost functions. The potentials determine the
singularities of those functions. The residues are proportional to
the coupling constant. See (6.9) and (6.15) how the problem of going
from the "measured singularitiesf to the potential, the inverse pro-

d order case. See [7}.

blem, is more involved than in the 2"

We refer to the literature for this problem[ﬁl, which we do not in
tend to discuss here, but only to point out an essential difference.
In order to solve the problem it is necessary to know not only the
transition matrix whose elements depend only on the coefficients of
the scattering states but also the transition matrix involving the

coefficients of real exponentials. This means that in this case it

is not true that all the physics is contained in the scattering states.

8 DISCUSSION

We defined the Jost functions associated with the fourth order
wave eqg. with a §-function potential, according to the asymptotic be
haviour of the corresponding solutions. They are analytic functions
in the compiex k;plane with rays of discontinuity that divides the

complex plane in octants. To each of the rays there corresponds a
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discontinuity matrix relating the set of Jost functions on both sides..
Essentially there are only two such matrices, one for each two conse

cutive rays. The rest repeats this two by the symmetry properties.

The discontinuity matrix on the real pbsitive k-axis (5.8), (5.9) is

similar to the usual S-matrix and can be measured asymptotically with
the plane wave state (scattering state}. This fact is not true for

the other discontinuity matrix, which is related to waves with real

exponent amplitudes and is not determined by the scattering pyue‘mne
states. We see that the physical observation of the scattering states,
plus the knowledge of the bound states with its residues and the to-

tal reflexion state is not equivalent to the knowledge of the poten-
tial.

There.are also isolated singularities (poles) of thé Jost func-
tions. As in the second order eqgs. there are poles associated with
bound states Cf (6.14), (6.15) but there are also poles .associated
with total reflexion by the potential Cf (6.8), (6.9) a fact which

does not appear in second order equations.

ACKNOWLEDGEMENTS

The authors are indebted to Mr. Nami Fux Swaiter for calling their
attention to ~ Tomei work. They are indebted to Prof. .Carlos Tomel
for several interesting discussions on the subject when most of the

mathematical methods of the paper were learnt by the authors.



CBPF-NF-005/87

BIBLIOGRAPHY

S.W. Hawking, Preprint Univ. of Cambridge, Dept. of Applied Math.
and Th. Physics, September 1985.

R. Delbourgo & V.B. Prasad, J. Phys. Gl (1975) 377.

C.G. Bollini & J.J. Giambiagi, Phys. Rev. D 32 (1985) 3316.
C.G. Bollini & J.J. Giambiagi, Preprint CBPF-NF-037/86.
A.0. Barut & G.H. Mullen, Annals of Physics 20 (1952) 203.

Scattering on the line- an overview.
R. Beals, P. Deift and C. Tomei, Atas da VI? ELAM, IMPA. Rio de
Janeiro 1986. '

Deift P..Tomei C. and Trubowicz E. Inverse scattering and the Bous
sineq Eqg., Comm. Pure and Appl. Math XXXV 567-628 (1982).

I.M. Gel'fand -B.M. Levitan. "On the determination of a differen
tial equation from its spectral function". Amer. Math. Soc. Transl.
Vi {1955) 253.



