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Abstract

The electronic structures of NH3 and NiNH3 are investigated by the Þrst-principles Dis-

crete Variational method within on the local spin-density approximation (LSDA) density-

functional theory. Calculations were performed to study the total energy as a function of

the interatomic distances and to understand the nature of the bonding of lone-pair ligand

to transition metal.
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Introduction

There have been many theoretical investigations about the nature of the bonding lone pair

ligands to transition metals [1]. The main interest is related to the fact that important

chemical reactions are catalyzed by transition metals. Due to advances in computational

techniques more and more problems, like adsorption process of NH3 on transition metal

surfaces [2], have recently been appropriately treated. Bauschlicher and others [1, 3]

have extensively studied the mechanism of interaction between several types of ligands

to the transition metals by using ab-initio theoretical methods in order to determine the

electronic structure [3].

The self-consistent calculation with the Discrete Variational method (DVM) [4] de-

veloped in the framework of local spin-density approximation (LSDA) density-functional

theory has been successfuly employed to study essentially electronic properties of solids

using cluster representation [5]. However, computational schemes for the application of

the Density Functional theory to molecular systems have been developed [6].

In the present work we report a study of the NH3 and NiNH3 molecules using DVM.

The nature of the bonding and the energy curves calculated as a function of the interatomic

distances are analyzed. Ammonia, for example is a well established system and we can

compare the results with those found in current literature. In other words, we are aiming

to show that the DVM method can be a reliable scheme to investigate systems with

strong directional properties. The theoretical study of the species FeNH3 [7] allows for

the interpretation the experimental Mössbauer parameters [8].

Method of Calculation

We have performed electronic structures calculations for the molecules in case, employing

the Þrst-principles Discrete Variational method (DVM), developed within the local spin

density approximation theory for exchange-correlation energy [9].

The full details of the DVM method have been described elsewhere [4]. The essence of

the DVM scheme is to solve the self-consistent one particle Kohn-Sham equations, which

for the spin-polarized case [10] are written in Hartree atomic units as:
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ρ(!r) =
$
i,σ

niσ|φiσ|2 i = 1, · · · , N (3)

where the summation in (3) runs over the lowest N molecular spin orbitals φiσ with

occupation niσ which are expanded on a basis of atomic numerical orbitals (LCAO ap-

proximation) centered at the symmetrically equivalent atoms. The nuclear attraction and

the Coulomb repulsion potentials due to the electrons are described by the Þrst two terms

in (2), with ρ = ρ↑ + ρ↓, while the last one is the spin-dependent exchange-correlation.

Since both polarized and nonpolarized calculations were made, we have adopted for the

exchange-correlation potential in the local-spin-density approximation the one derived by

von Barth-Hedin [11], easily adapted to either cases. Whenever the correlation effects are

neglected, the von Barth-Hedin potential vxc(!r)σ reduces to the Kohn-Sham potential [11]

vx(!r)σ = −2[3ρσ(!r)/4π]1/3 Hartrees, (4)

where ρσ is the density of electrons of spin σ and can be different for the two spin

orientations. Both of these potentials were used in our self-consistent calculations in order

to observe how far are the results affected by the correlation correction. This correction

contains a logarithmic term multiplied by a constant.

The functional dependence of the Coulomb potential on ρ(!r) leads to the so-called

three-center integrals, which have a large computational cost. This problem is largely

bypassed by DVM, adopting a variational density expansion scheme, which consists of re-

placing the exact molecular charge density ρ(!r) by a self-consistent multicenter-multipolar

(SCM) representation [12]

ρ(!r) ∼= ρ
SCM

(!r) =
$
j
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j
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C iλ#mRN(ri)Y#m(!ri). (5)

Here ri is the local coordinate relative to site i, the i summation is over a symmetry-

equivalent set of atoms, the symmetry coefficients Ciλ#m belong to the totally symmet-

ric representation of the molecular point group and RN are piecewise parabolic radial

functions centered on each nucleus i while λ denotes different basis functions of a given

( (j = I, (,λ, N). The coefficients dj are determined numerically by a least-square Þt to

the charge density on the variational points grid. We have calculated self-consistent re-

sults using multipolar densities up to ( = 2 for Ni and N, and ( = 1 for H; the least-square

Þt leads to errors around 0.02 and 0.06 for NiNH3 and NH3 respectively.

Besides obtaining the Coulomb potential by one-dimensional numerical integration as

desirable, ρ
SCM

theoretically allows calculations of the Coulomb and exchange-correlation
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potentials as precise as one wishes, at the cost of adding more and more terms. It has been

veriÞed that ρ
SCM

is more efficient than anything else to describe the effects of anisotropy

bonding charge [12, 13]. That is an important fact whenever systems and properties such

as molecules and total energy are investigated.

In the DVM method, the total energy E is calculated by a point by point numerical

integration of the difference-energy density [14]

E = $e(!r, { !Rν})− eNI(!r, { !Rν})%+ ENI (6)

in which a reference system of non-interacting (NI) atoms centered at the nucleus sites

!Rν is introduced in order to suppress numerical noise arising from the e(!r, {!Rν}). The
basis set is adopted as the standard reference.
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Results and Discussion

A -Some Aspects of the Calculation

The purpose of the present work is to examine the bonding nature and the total energy

curves covering a wide range of N-H and Ni-N distances in order to determine the equi-

librium distances for NH3 and NiNH3 respectively. Both of them have C3v structure. For

NiNH3, the metal atom is constrained to lie on the main symmetry axis (the z axis) of the

ligand. The ammonia in the NiNH3 molecule was treated using the experimental equilib-

rium geometry [15]: N-H=1.00ûA with an angle H-N-H=107.20, while it was reasonable to

assume that the Ni-N distance is given approximately by the sum of the covalent radii of

the two atoms or Ni-N=2.00ûA. The other distances used varied around this value. For the

NH3 self-consistent calculations, the H-N-H angle was kept Þxed, while some N-H values

around 1.00ûA were taken into account.

In order to increase the variational freedom, we have extended the basis set in both

molecules by including the virtual atomic orbitals (4p), (3d) and (2s,2p) for Ni, N and

H respectively. In the atomic calculations a potential well trapezoid-like shaped � with a

depth of -2.00 Hartrees � was added to the atomic potential so as to keep the hydrogen

diffuse virtual orbitals (2s,2p) bounded. This procedure was also adopted for N, since it

acquires a much larger negative charge during the self-consistent process. Moreover, the

basis set was derived by considering at the same time two facts: to make it more consistent

with the real molecules and to take into account that the total energy algorithm (see Eq.

6) uses as the reference system the separated atoms in the basis set, which turns it essential

to Þx it for each molecule. In order to deÞne the basis set to be used the interatomic

distance Ni-N=2.00ûA was chosen for NiNH3 and the following procedure was adopted: at

the end of each convergence of the self-consistent potential a Mulliken-type population

analysis is performed [5i], and the population obtained is used to deÞne atomic charges and

conÞguration for the Ni, N and H atoms in NiNH3 molecule. For this conÞguration a new

self-consistent atomic calculation is obtained. This procedure is stopped before achieving

the optimum basis set. By an optimum basis set we mean that the conÞguration of the

basis atomic orbitals is approximately the same as that of the atoms in the real molecule.

The reason for that is that the same basis set has to be used for different interatomic

distances as discussed above. To deÞne the basis set for NH3 an additional fact was

considered: the bonding between N and H in the NiNH3 and NH3 molecules respectively

for the asymptotic Ni-N values and at the equilibrium bond length has to be comparable.

For this reason, the basis functions for NH3 was determined by considering the Mulliken-
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type population for the largest Ni-N distance investigated in NiNH3(Ni-N=3.33ûA). These

populations were used to deÞne atomic charges and conÞgurations for the N and H atoms

at the N-H=1.00ûA interatomic distance in order to obtain atomic orbitals for the basis set.

The remaining procedure is the one described above. It is important to emphasize that

for both molecules an optimum criterion of convergence of the self-consistence potential

was adopted for each interatomic distance examined. Thus, the electronic structure and,

accordingly, the electronic conÞguration of the molecules reßect this optimizing procedure.

All the electrons were taken into account. The total number of points for the self-

consistent calculations was approximately 13.500 and 18.800 for NH3 and NiNH3 respec-

tively. However, 87% of them were generated by using a precise polynomial numerical

integration inside spheres of radii equal 0.95, 0.53 and 0.26ûA around Ni, N and H respec-

tively. This procedure assures us that the core and shallow orbitals will be well described.

The remaining points outside these spheres were obtained by a pseudo-random Diophan-

tine scheme. A total of 81.000 and 114.700 points respectively for the NH3 and NiNH3

molecules were used to calculate the total energy with the same partioning of points as

described before.

By using polynomial functions the best Þtting was pursued in all curves presented

here.

B- Ammonia

The total energy relative to an arbitrary origin for different N-H distances is plotted in Fig.

1. A and B curves refer to the self-consistent caluclations using respectively the Kohn-

Sham and von Barth-Hedin potentials. A total of twelve points was considered ranging

from 0.53 to 1.48ûA. It is to be noted that on the whole the effect of the von Barth-

Hedin correction (correction between electrons of different spins) is only to lower the total

energy values. The shape and the equilibrium bond length, found to be around 1.03ûA,

in excellent agreement with the experimental value for H-N-H=107.20, are essentially the

same. It is interesting to note that subtracting one curve from the other one obtains a

straight line which implies a linear correlation with the N-H interatomic distances.

We have obtained 1a2
12a

2
11e

43a2
1(

1A1) for the ammonia electronic conÞguration in a

wide range of the N-H distances studied.

The lowest energy molecular orbital belonging to the totally symmetric representation

(1a1) is characterized by the N1s electrons. The latter trio forms sp
3 hybrid orbitals with

a tetrahedral disposition and strong directional properties. Essentially these orbitals are

respectively of N2s, N2px/2py and N2pz character. However, the overall characteristic of
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this set of molecular orbitals, enveloping the eight valence electrons, is changed along the

N-H series. For the shorter N-H distances the 2a1 orbital shows a non-negligible degree

of hybridization between the dominant 2s function of N and N2pz and an admixture with

H1s orbital The charge distribution (in % of one electron) for the second of them increases

from 3% to approximately 16% within the range of 0.5ûA <N-H<0.8ûA and then it decreases

continuosly reaching 3% at N-H=1.48ûA, the largest interatomic distance considered. In

contrast, the charge distribution for the N2pz function diminishes smoothly from 14% to

3% for distances between 0.53ûA and 1.48ûA. The next orbital (1e degenerate) presents

considerable mixture between N2px/ 2py and H1s as expected from the C3v symmetry.

The degree of mixture increases rapidly and from 0.85ûA to the equilibrium bond length,

N-H=1.03ûA, the 1e orbital is almost Þfty-Þfty. From this distance on the degree of bond

between N and H starts dropping slowly; however, even at the largest distance considered

the 1e orbital has a non-negligible contribution of H1s (34%). Finally the last occupied

orbital 3a1 describes the nitrogen lone pair electrons (2pz). Related to this feature there

exists a small hybridization with N2s as well as a small H1s contribution. The predominant

N2pz character is increased with interatomic distance from 78% to 90% at 1.03ûA. From

this point on it diminishes in a marked way until 80% at the largest N-H distance taken

into account. An opposite dependence is observed for N2s presenting however, a smoother

trend than the 2pz function, while the H1s contribution might be certainly ignored between

0.6 and 1.2ûA. Around 1.2ûA it is once again observed and reaches the fractional charge

contribution of 8% at the largest N-H interatomic distance.

The results discussed above are displayed graphically by the Mulliken-type bond orders

(Fig. 2). There, the a1 and e curves are the N-H bond order summed over all the occupied

molecular orbitals belonging to each symmetry of the C3v group and the a1+e curve is the

sum of them. Thus, for instance, the contributions coming from the 2s and 2pz functions

of N and H1s are simultaneously taken into account in a1. They are derived from the self-

consistent calculations considering the von Barth-Hedin potential. We may notice that the

antibonding nature of the totally symmetric representation a1 decreases with increasing

N-H distances. This fact is strongly related to the reduction of the 2s-2pz degree of

hybridization present in both valence orbitals a1 and also the H1s contribution. Around N-

H=0.7ûA, it acquires a bonding character which in the limits of 0.7ûA <N-H<1.1ûA becomes

more and more positive and decreases gradually slowly up to N-H=1.48ûA. The degenerate

orbital e, which is responsible for the largest degree of mixture between N and H, shows

a bonding nature around N-H=0.65ûA. This characteristic increases continuously up to

N-H=0.85ûA. From 0.85ûA to approximatelly 1.15ûA it remains virtually constant and then

it increases smoothly its positive bonding character until the upper N-H interatomic
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limit investigated. The resultant curve (a1+e) is approximatelly of the same shape as e

symmetry curve. However, the largest bond order value is achieved around N-H=0.90ûA

and it stays approximately Þxed until the N-H=1.1ûA interatomic distance. This fact

coincides with the increasing contributions of the N2pz and N2s respectively in the 3a1 and

2a1 orbitals and the large degree of admixture between N and H in 1e, as mentioned before.

These results do not differ signiÞcantly from the ones obtained using the Kohn-Sham

potential. As can be seen from the total energy curves (Fig. 1), the correlation between

electrons of different spins is insigniÞcant for the NH3 molecule. We can explain this result

taking into account the diffuse shape of the sp3 orbitals. From this consideration it is clear

why at the equilibrium distance the 3a1 orbital is predominantly of N2pz character.

The N-H equilibrium bond length obtained by DVM is much closer to those calculated

by other theoretical methods based on LSDA density-functional theory [6b,16a]. Becke

et al have pointed out that truncated basis set in LCAO methods can be responsible for

sistematic error in LSDA calculations. Becke developed a computational method, which

is free of conventional LCAO basis set [6a]. Comparison between our results [6b] suggests

that the errors due to basis-set truncation were largely bypassed by the procedure adopted

here to mount the basis set used in our calculations.

C- NiNH3

We have considered for NiNH3 the conÞguration:

(↑) 9a1
110a

1
14e

25e2

(↓) 4e25e2

which yields a 3A1 state. In fact, we are not particularly concerned about the actual

ground state of the NiNH3 molecule. However, this conÞguration looks especially inter-

esting since one 3dz2 hole is introduced by failing to take the 9a1↓ into consideration thus
minimizing the overlap between the metal 3dz2 orbital and the lone pair N2pz. Indeed,

the ground state found for NiNH+
3 is a 2A1 state derived from the Ni+ 3d9 occupation

with a hole in the 3dz2 orbital to minimize repulsion [3f]. However, for a more rigorous

description in terms of repulsion, the 4s-3dz2 hybridization mechanism must be consid-

ered; it can also reduce (s-d hybrid) or increase (s+d hybrid) the metal-ligand repulsion

by decreasing or increasing respectively the charge density along the Ni-N axis. Both of

them will be emphasized in our discussion.

In Fig. 3 the total energy curves are plotted with respect to an arbitrary origin, using

the Kohn-Sham (A) and von Barth-Hedin (B) potentials. It is important to pay attention

to the energy scale: the left hand one is associated with A potential while the right hand
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one refers to the B potential. We have carried out self-consistent calculations by examining

ten Ni-N interatomic distances from 1.75 to 3.33ûA. One observes that the dependence

of the total energy on the potential employed differs from the ammonia molecule. The

marked difference concerns the distinct values obtained for the equilibrium distance. They

are around 1.98ûA and 1.96ûA for the A and B curves respectively. The regions around these

values are focused in detail on Fig. 4. Calculations of diatomic molecules have shown that

both Hartree-Fock-Slater (HFS), in which the correlation between electrons of different

spin is not considered, and Local Density Approximation (LDA) give equilibrium distances

closer to the experimental values than Hartree-Fock scheme. However, there are some

examples where LDA is in better accord with experiment than HFS [16b]. As compared

to the NH3 case, the lowering energy effect related to the von Barth-Hedin correction is

more strongly in NiNH3 and the shape of the two curves is quite similar as illustrated

in Fig. 3. It is also interesting to emphasize that contrary to the behaviour of NH3, a

subtration of one curve from the other yields two straight lines with different slopes which

cross far from the equilibrium distance region, around Ni-N=2.24ûA.

In Fig. 5 the total bond orders (a1+e) of N-H, Ni-N and Ni-H obtained by self-

consistent calculations with the von Barth-Hedin potential are displayed. Differences

between both potential are negligible. Let us start by examining the Þrst one.

It can be seen that the N-H curve presents a bonding character everywhere, as ex-

pected. However, this feature is more pronounced for small values of Ni-N distance and

diminishes smoothly until the equilibrium region. From then on, the bonding character

continues to decrease with a less monotonous behaviour and at approximately Ni-N=2.75ûA

it becomes constant around 0.4, comparable to the total bond order (a1+e) value at the

equilibrium bond length in ammonia (see Fig. 2). In order to extend our discussion let

us introduce Fig. 6. It shows the higher energy one-electron energy levels of the NH3 and

NiNH3 molecules at the equilibrium distance. It also displays the atomic valence levels

of Ni, N and H obtained with atomic local density calculation. The orbitals from 7a1

to 8a1 correspond only to the NH3 molecule. It is interesting to note that this set has

lower energies than that found in the ammonia molecule. These results suggest that at

the equilibrium distance (N-H=1.03ûA) the NH3 molecule in NiNH3 becomes more stable

than without Ni. The lower of these orbitals (7a1) presents from the qualitative point of

view the same composition determined for the 2a1 orbital in NH3. However, it shows a

reasonable degree of mixture between N2s (80%) and H1s (17%). The same characteris-

tic is repeated in the degenerate 3e orbitals. The differences in energy between the 2a1

and 1e NH3 orbitals and their respective partners in NiNH3 have approximately the same

values. This observation is important when the next orbital is considered. Difference in



� 9 � CBPF-NF-004/95

energy between the values of the 8a1 orbital in NiNH3 and 3a1 is markedly larger. The

reason for this is the presence of 4s (5%) and 3dz2 (14%) functions of Ni suggesting the

formation of a 4s-3dz2 hybrid which reduces the charge density along the Ni-N axis and

as a consequence, the repulsion [3b].

The next curve in Fig. 5 refers to the Ni-N bond order and differs signiÞcantly from

the others. It shows that the antibonding character drops rapidly with the Ni-N distance.

The order of the bonds are almost linearly correlated with the Ni-N interatomic values.

This behaviour is present up to approximately Ni-N=2.45ûA. Above this value the curve

becomes smooth and a bonding character is observed which remains constant from 2.90ûA

on. Moreover, we can observe a marked antibonding character at Ni-N=1.96ûA, the dis-

tance found to be the equilibrium bond length (see Fig. 4). This result reveals that the

electronic conÞguration considered for the NiNH3 molecule (
3A1) can not give useful in-

formation us to the ground state. However, from the present point of view, the minimum

energy conÞguration is of limited importance. Our interest here is to analyse the response

of the electronic density ρ to the bonding between Ni and NH3 in order to compare our

results with those reported in the literature [3b,3f], using other theoretical methods.

The explanation of the behavior associated to the curve discussed above comes as

expected fundamentally from the set of orbitals belonging to a1 symmetry (9a1 ↑ and
10a1 ↑). Firstly, let us examine the region with an antibonding character (1.7ûA <Ni-

N<2.5ûA). Here, the orbital 9a1↑ is essentially constituted of the valence 3dz2 function of

Ni. Its contribution for 9a1↑ rises rapidly from approximately 66% to 93% at Ni-N=1.75ûA
and 2.25ûA respectively. On the other hand, the contributions from the Ni4s and N2pz

orbitals to 9a1↑ present exactly the opposite behaviour. The former shows a pronounced
reduction from 22% to 5% while the latter diminishes quite smoothly from approximately

4% to 1.5%. The virtual orbitals of H (2s and 2p) are also found but in a smaller fractional

proportion than the others. From 2.0ûA on they can be considered negligible. Within the

bonding region ranging from 2.5ûA to 3.1ûA the charge contribution due to Ni3dz2 shows a

monotonous correlation with Ni-N distance, but it is still positive (from 95% to 97%). At

the largest interatomic value considered (Ni-N=3.33)ûA, such contribution drops abruptly

to 76%. This effect is compensated by a sharp increase of around 20% in the 4s function

of Ni, small contributions from H2s and 2p are present once again. However, except for

Ni-N=2.5ûA with 2%, the Ni4s orbital shows negligible contributions for 9a1↑ within the
remaining range of bonding character, while on the contrary, the N2pz function varies

continuously from 1.6% to 2.5%. In general, the highest occupied orbital in energy with

a1 symmetry (10a1↑) shows a fractional charge distribution pattern quite similar to 9a1↑.
However as compared with 9a1↑ the contributions due to the orbitals 3dz2 and 4s of Ni as
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a function of Ni-N distance behave in reverse order when the virtual functions of H are

substituted by Ni4pz and N2s. Within the antibonding region (1.7ûA <Ni-N<2.5ûA), Ni4s

rises with interatomic distance from nearly 73% to 90%. This trend continues until Ni-

N=3.1ûA at which distance a contribution of around 78% is observed. Such value indicates

how abruptly the charge contributions drop within the short bonding range of 3.10ûA <Ni-

N≤ 3.33ûA. An opposite behaviour is observed for the functions 3dz2 and 4pz of Ni. Both

of them decrease markedly in the limit of the antibonding region and show a monotonous

dependence on interatomic distances larger than 2.5ûA. In % of one electron, the charge

distribution of Ni3dz2 and Ni4pz vary respectively from 16.% to 1.3% between the limits of

1.75ûA ≤Ni-N≤2.54ûA and from 11.15% to 1.3% within the range of 1.75ûA ≤Ni-N≤2.84ûA.
From the upper distance limits on their contributions are negligible but at Ni-N=3.33ûA

contributions around 11% and 7% corresponding respectively to 3dz2 and 4pz of Ni take

place. The 2pz and 2s valence orbitals of N remain essentially Þxed inside the limits of

the antibonding range with fractional contributions around 3.5% and 1.5% respectively.

Outside this limit, the N2pz orbital exhibits a trend similar to 3dz2 and 4pz of Ni: it

drops smoothly from 3.2% to 2.4% at 3.1ûA and then it rises again until 3% at 3.33ûA.

Contributions due to N2s are negligible within the bonding region, except for the last

point examined, where 1% of this function is found.

The results discussed above suggest that more than one process, with different weights,

is responsible for the appearance of the Ni-N bond order and of the total energy curves

(Fig. 3). The most important of them is due to minimization of the overlap between the

Ni3d2
z orbital and the lone pair N2pz as a function of the distance. This effect reduces

signiÞcantly the repulsion between the metal and ligand along the z axis, increasing con-

siderably the bonding character between Ni and N. The predominance of this process in

relation to the others becomes obvious when the small Ni-N values are observed. Secondly,

we can also take into account the 4s-3dz2 hybridization. Its inßuence is especially impor-

tant when there exists a similar spatial extend of these orbitals as found on the left-hand

side of the Þrst-row transition metal. However, the repulsion Ni-N can be reduced by

promoting one 4s electron into the compact 3d orbital. This mechanism is fundamentally

present in 9a1 ↑ covering all interatomic distances until Ni-N=3.1ûA while 10a1 ↑ shows
an oppositive trend but not sufficiently different to invalidate comparisons, because the

charge distributions are partitioned in a different way. For example, the contributions due

to Ni3dz2 in 9a1↑ and Ni4s in 10a1↑ rise respectively by 26% and 19% until Ni-N=3.1ûA.

This suggests a resultant promotion of electrons from 4s to 3dz2. In Table 1 the charges,

Mulliken-type populations and magnetic moments for all the Ni-N distances considered,

are given. The Ni conÞguration is already near 3d94s1 at the smallest Ni-N distance and
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it is 3d8.994s0.824p0.06 at the equilibrium distance (Ni-N=1.96ûA). As shown in Table 1,

the 3d and 4s population increases as a function of the distance. This means that the

dissociation would lead to Ni 3d94s1 (3D) instead of the Ni ground state 3d84s2 (3F) [17].

In fact, for the largest Ni-N interatomic distance studied a Ni conÞguration 3d94s14p0.01 is

obtained. It can be seen that the charges on Ni and N decrease smoothly along the Ni-N

series except at 2.54ûA, where a more pronounced variation is observed. The charge on

H shows a different behaviour: it increases smoothly, however above 2.54ûA this trend is

reversed. The magnetic moment at Ni comes essentially from the 3d, 4s and 4p functions.

As seen in Table 1 when the Ni-N distance is increased, the contributions of these or-

bitals converge for values which are in agreement with the NiNH3 electronic conÞguration

adopted here: spin-down 9a1 and 10a1 orbitals are not occupied. Finally, let us consider

the admixture between the 4s and 4pz functions which are present in the 10a1 orbital.

This hybridization can contribute to minimize the Ni-N repulsion if the combination of

the plus and minus signs of the angular lobes of the 4pz function with 4s results in a

polarization away from NH3 [3f].

The last curve in Fig. 5 refers to the Ni-H bond order. The anti-bonding character is

smoothly correlated to the Ni-N distances, showing a positive slope until approximately

2.6ûA. From this point on the antibonding character is Þxed in relation to the remaining

interatomic distance values. We separate the a1 and e symmetry from the Ni-H curve

in order to discuss its behaviour. The antibonding character comes predominantly from

the a1 symmetry due to the admixture between Ni4s and H1s especially in the 8a1 and

9a1 orbitals for the small Ni-N distances. The degenerate valence orbitals 4e and 5e (Fig.

6) are respectively the Ni 3dxz/3dyz and 3dxy/3dx2−y2 functions. Both spin up and spin

down contributions are around 98.0% and 100.% along the Ni-N interatomic length series.

For the shorter distances the 4e up and down orbitals exhibit some mixture with H1s.

This participation is approximately 2.0% and 1.0% for both spin orientations respectively

at Ni-N=1.75 and 1.88ûA. From these distances on it becomes negligible. For this reason

the antibonding character associated with the e symmetry decreases as a function of the

distance and assumes a positive value around 2.5ûA.

Conclusions

We have employed the Þrst-principles Discrete Variational method by using the Kohn-

Sham and von Barth-Hedin potentials in order to calculate the electronic structure of NH3

and NiNH3. We have examined the total energy as a function of the interatomic distances.

For NH3 an excellent agreement with the experiment was obtained for the equilibrium
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distances in both potentials: 1.03ûA. The Kohn-Sham and von Barth-Hedin potentials

predict respectively values of 1.98ûA and 1.96ûA for the equilibrium bond length of NiNH3 in

the electronic conÞguration considered. The results suggest that the Discrete Variational

method gives a reliable description of systems with strong directional properties. At the

equilibrium distance, the resulting structure of NH3 consists of three molecular orbitals

describing the bonding between the N and H atoms and an orbital of predominantly lone

pair N2pz character. The nature of the bonding of lone pair NH3 to Ni was discussed

in terms of the minimization of the overlap between the Ni3dz2 and N2pz functions,

hybridization and the promotion of the 4s electron into the compact 3d orbital to reduce

repulsion along z axis.

Acknowledgements

The author would like to thank Diana Guenzburger and D.E. Ellis for valuable constant

advise. The author is also indebted to Afonso Gomes and George Bemski for their interest.

Computations were carried out at the Centro Brasileiro de Pesquisas F́õsicas, Rio de

Janeiro.



� 13 � CBPF-NF-004/95

Figure Captions

Figure 1 � Total energy of NH3 as a function of the N-H interatomic distance. The A and

B curves refer respectively to the Kohn-Sham and von Barth-Hedin potentials.

Figure 2 � N-H Mulliken-type bond orders of NH3 as function of the interatomic distance:

the a1 and e curves are the total contribution from the occupied orbitals of the C3v sym-

metry.

Figure 3 � Total energy of NiNH3 as a function of the Ni-N interatomic distance. The

A and B curves are associated respectively with the Kohn-Sham and von Barth-Hedin

potentials on different vertical scales.

Figure 4 � Total energy of NiNH3 versus Ni-N distance (Fig. 3) enlarged to show details.

Figure 5 � The total N-H, Ni-N and Ni-H (a1+e) Mulliken-type bond orders versus Ni-N

interatomic distance.

Figure 6 � Valence one-electron energy level schemes for NiNH3 and NH3 at the equilib-

rium distances. Atomic levels of neutral Ni and N are also shown.

Table Caption

Table 1 � Ni-N interatomic distances, charges, magnetic moments (spin-up minus spin-

down populations) and populations for NiNH3.
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