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Abstract

Following the (standard) Dirac procedure, we describe the sponta-
neous symmetry breaking in light-front quantized scalar field theory. The
gero mode operator of the field is shown to commute with the nonzero
mode operators, and thus may be looked upon as a background field. In
the light-front framework a nonlocal constraint must be satisfied. The val-
ues of the background field at the tree level, as a consequence, are shown
to follow from the minimization of the light-front energy functional. We
are thus led to a description paralle] to the one made in equal-time frame-
work where we appeal to physical considerations and minimize the energy.
These values characterize the various (non-perturbative) vacua over which
the corresponding physical sectors may be built by applying the non-gero

mode operators.
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1. The possibility of building & Hamiltonian formulation of relativistic dynamics on
light-front surface, v = (¢ + z) = conast., was pointed out by Dirac (1] and rediscovered by
Weinberg [2] in the guise of old-fashioned perturbation theory in the infinite-momentum
frame. Since the longitudinal momentum k* turns out to be necessarily positive, it is hoped
that, the vacuum being trivial (perturbative), the non-perturbative effects may be casier to
handle. The perturbative field theory is, in fact, much simplified and with the introduction
of the discretized light-cone quantization (DLCQ) [3] it has developed into a useful tool to
handle the non-perturbative calculations as well. Other interesting developments are the
recent studies on Light-front Tamm-Dancoff Field Theory [4] to study non-perturbative
effects and the begining of a systematic study of perturbative renormalization theory [5].

The problem of non-perturbative vacuum structure, Higgs mechanism, the fermionic
condensates, and other related problems, in the framework of light-front quantized theory,
however, has remained without a clear understanding [6] even at the tree level, say, a
description parallel to the well known familiar one in the case of equal-time quantization.

We will consider here, for concreteness, the simplest case of spontaneous symmetry
breaking in scalar field theory. In equal-time formulation the tree level description of the
(non-perturbative) vacuum is given in terms of the constant background field (zero modes)
obtained by minimizing the energy functional appealing to physical considerations. In
the light-front frame work we lack a justification for minimizing the light-front energy.
It is, however, suggested that the zero modes should also play a similar role here. We
show here that we do find the answer if we handle carefully the constrained dynamical
system at hand by the well tested and widely used standard procedure of Dirac {7} for
constructing a canonical framework which may be later quantized. We find a non-local
constraint in the theory (eq. 8) which at the tree level does give rise to a justification
for minimizing the light-front energy for finding the background fields which describe the
(non-perturbative) vacua even in the light-front framework. Such constraints may also
arise in other interacting field theories written in terms of light-front coordinates. Their
consideration seems to have been overlooked in the literature and it is clear that their
implications at the quantum level need further study. A special feature of any action

written in terms of light-front coordinates is that it describes a constrained dynamical
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system. Since most of the essential points may be seen in the case of scalar field theory
in 141 dimensions we will adopt this simplification. The extensions to higher dimensions
and continuous symmetry are straightforward. There have been some earlier attempts
along this direction which, however, are rather inconclusive or incomplete [8,9,10]. We
will follow here the standard Dirac procedure by finding out all the constraints in the
theory (the constraint p = 0 obtained below was missed in [8]) and do not introduce any
modifications neither in the procedure nor argue to increase the number of constraints
[10]. It would be, in the least, very embarassing for the highly successful Dirac procedure
as applied to gauge theories and other constrained systems if wé are required to introduce
modifications to it in order to handle the very simple case under discussion. We will also
not discretize the modes, as is usually done, in order not to introduce in the discussion

spurious zero modes, for example, coming from the sgn function.

2. The light-front Lagrangian for the scalar field ¢ is

[ : dz [¢¢' — V(#)], (1)

where V() > 0, for example, V(¢) = (1/4)($* — m? /A)? , the potential with the wrong
sign for the mass term and A > 0. Here an overdot and a prime indicate the partial
derivations with respect to the light-front coordinates 7 = 2+ = (2° + z')/v2 and ¢ =
z- = (z° — z1)/v/2 respectively and z+ = z_,z4 = ¢~ while &’z = drdz. The Euler
equation of motion, ¢' = (~1/2)V'(¢) , where a prime on V indicates the variational
derivative, shows that classical solutions, for instance, ¢ = const., are possible to obtain.
We start out by seperating the zero mode, w = w(r), and write ¢(z,7) = w(7)}+ ¢(z,7)
with the corresponding Fourier transform ¢(k,7) = v2mw(7)8(k) + ¢(k,7) so that ¢ has
no zero mode and on integrating it over space variable it gives vanishing result, It is then

easily seen that the Lagrangian density may be writien as

L =gy’ —V(¢). (2)
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which is of first order in ¢ and contains no kinetic term for the zero mode and consequently
describes & constrained dynamical system. Indicating by p and # the momenta conjugate
to w and ¢, respectively, the primary constraints are p(7) ~ 0 and & = 7 - o' = 0
while the canonical Hamiltonian density is shown to be H, = V(¢). Here = stands
for the weak equality [6]. We postulate now the standard Poisson brackets at equal 7,
{p,w} = -1, {x(z),¢(z)} = —6(z — y) etc., and define an extended Hamiltonian

H'(7) = H.(7) + p(r)p(7) + / dy u(7,y)8(7,¥) (3)

where u and u are Lagrange multipliers. Using (3) we derive
5= pEY~ - [EVi) = -0, @

$ = {3,H)}~ — V'(¢) — 2u". (5)

The requirement of the persistency, p ~ 0, leads to a secondary constraint B =2 0, while
& =~ 0 results in & consistency condition and does not generate any any new constraint.
Defining the next extended Hamiltonian by adding a term v(7)3 to H' and repeating the
procedure we find that no more secondary constraints are generated if we set v = 0.

We easily verify that the three constraints p~ 0, § =0, ® ~ 0 in our system are
second class. They may be implemented in the theory by defining Dirac brackets and this
may be performed iteratively. The Dirac bracket with respect to the pair px 0, f=0 ,
{B(7),p(7)} = a(r) = [ dz V"(¢) , is easily shown to be

=) s} = () @)} - Z[{(=),PHB, 50} - (B + p)) (6)

We may now set p = 0 and # = 0 as strong equalities since {f,p}* = {f,f}* =0
for any arbitrary functional f. The nonvanishing brackets, at this stage, are {w,n}* =
{w,®8}* = —a1V*(¢), {n(z),¢(y)}* = ~6(z — y). It may, however, be shown that, for
the cases relevant to our discussion, « is , in fact, infinite and as such w has vanishing

bracket with all the surviving canonical variables. We have
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a(r)=LV"(w)+ %V“V) j dz ¢?, (7)

where we set L = 27 6(0) and assume terms up to order ¢* in the potential. We have to

combine this with the constraint

B(r) = LV'(w) + V" () f de g + VIV / dzy® = 0. (8)

We conclude from (8), since L — oo , that the allowed values for w are given by solving
V!(w) = 0 which corresponds to minimizing the light-front energy H.. It is worth remark-
ing that if we had followed the above discussion through the discretized (box quantization)
formulation with the periodic boundry conditions the symbol L would there stand for the
finite extension along the longitudinal z direction while in (8) the integrals would run from
—L/2 to L/2 with similar modifications in other expressions. Returning to our discussion,
if we ignore the massless case and do not allow any cubic term (which will explicitly break
the reflection symmetry), we find that the coefficient of L in (7) is nonvanishing for any
allowed value for w and hence {w,7}" = {w,®}* = 0 for the interesting cases. Corre-
sponding to the potential mentioned earlier we find w = 0, m/ vA . In the case of the
correct sign for the mass term, e.g., m? — —m? , or in the free theory w = 0. The same
results of course may be shown to follow if we quantize the system in a box of length L
along z direction.

The remaining constraint & =~ 0 may now be implemented; it is second class by
itself. From the bracket {&(z),&(y)}* = —28:8(z —y) = C(z,y) = —C(y,z) and
C-(z,y) = —C~¥y,z) = —e(z —y)/4 it follows that the final Dirac bracket which

implements all the constraints is given by

() so'= (o), 900} + 5 [ [ udo((2), 8} el — o)) 5N (0)

We nia.y now also set ® = ' as a strong relation . Both p and 7 are removed from the

theory and we are left with the constraint (8) while H' in (3) reduces to the canonical
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form H.. From (9) we derive {w,¢(z)}p =0, {w,w}p =0 as well as the usual light-
front result for the non-zero mode field, e.g., {p(z),¢(¥)}p = —(1/4)e(z —y) . The
commutation relations for the corresponding operators in the quantized field theory are
obtained by the correspondence i{f,g}p — [f,g] . For the field ¢ they may be realized

in momentum space through the following expansion (7 = 0)

___1_ = wa e ks a"’ etk i
¢(=)—‘/2—ﬂj; ak 22 ak)e=t + o (ke (10)

The operators a{k) and al (k) satisfy the usual commutation relations, viz, [a(k), a(k')t] =
5(k — k'), [a(k),a(k')} = O, and [a(k)t,a(k’)t] = 0 while the zero mode commutes with
them and thus is proportional to the identity operator. It may, in our case, be looked upon
as constant background field which characterizes the physical sectors. The vacuum state is
defined to be annihilated by the destruction operators, a(k)|vac) = 0. The normal ordering
with respect to the creation and destruction operators, which is interaction independent,
may be introduced. The longitudinal momentum density is : ¢'> : and we find [a(k), P*] =
ka(k), [a.f(k), P+ = —k ot (k) which gives a justification for the above normal ordering.
In the case of the potential with reflection symmetry mentioned above, the allowed values
w = £m/f+/A describe the assymetric sectors built on non-perturbative vacua which break
the reflection symmetry spontaneously, (|¢]),,. = £m/vA while, w = 0 describes the
unbroken symmetry symmetric sector, {|¢|},,. = 0 . The Fock space may be built over
any of these vacua. There are no operators in the theory which will take us from one sector
to another. In our example, P~ = H = [ dz : V(¢) : and P~ |vac,w = +m/vA) =0

for the degenerate vacua while on the w = 0 phase we obtain an infinite value. It is
also easily seen that the (operator) constraint (8) applied on the vacuum state also lead to
V'(w) = 0 a5 a consequence of the of the normal ordering, the positivity of the longitudinal

momentum, and its conservation in the framework of light-front quantization.

3. We thus obtain, on following the Dirac procedure carefully a description, in the
light-front framework, of the tree level spontaneous symmetry breaking mechanism parallel
to what is known when we perform the quantization on ¢ = const. planes. The constant

background field is found by minimizing the light-front energy functional now. This is
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not at all obvious at the start since the Lagrangian is degenerate and we lack a phsical
consideration to minimize the light-front energy to obtain it. The Dirac procedure in our
case gives rise to a non-local constraint which results in the above criteria. The constraint
B =~ 0 is also evident even at the Lagrangian level, if we assume appropriate boundary
conditions and integrate the equation of motion. However, we need to build a canonical
framework for quantizing the theory. The scalar field zero mode here is found to be a
background field characterizing the different (non-perturbative) vacua. This is in contrast
to the case of the light-front quantization of the bosonic version of the Schwinger model
where the zero mode of the scalar field must be an operator. In fact, in this case in order
to ensure at the quantum level the symmetry of the Lagrangian with respect to the shift
by a constant of the scalar field (chiral symmetry), a zero mode from the only other field
available, viz, the gauge field, must be an operator and canonically conjugate to the zero
mode operator of the scalar field. This model can also be handled by following the standard
Dirac procedure without any modifications [11]. Finally, the Higgs mechanism may also
be shown to be described [12] by following the same procedure.
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