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SUMMARY

Groups of galaxies are simulated by Monte Carlo
technique. The mass distribution of the groups is assumed
to follow a power-law. Furthermore, a linear relationship
between mass and luminosity is considered.

The calculated velocity dispersion is compared
with the observational data and proﬁides an estimation of
the range in which the galaxy masses are dlstributed. It is
shown, in this case, that the mass discrepancy can cover up

two orders of magnitude, such as pointed out in the literature.

Key~-words: Groups of galaxies; Monte Carlo simulation.

PACS number: 98.50K - Groups, Galactic.
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I. INTRODUCTION

Groups of galaxies (3-30 galaxies) are believed to
be a very important source of information about the mass of
'galaxies and the total mass of each group itself (1,2). With
respect to the observational data, a number of catalogues of
groups of galaxies have been compiled in these last two
decades (3,4,5,6), in Spite of the difficulty to identify a
given observed cluster of galaxies as a group. In the same
time, theoretical approaches have been worked out, giving a
dynamical description of groups of galaxies (7,8,9). All of
these theoretical studies basically use the classical n-body
simulation technique. Recently, interesting questions as the
_distribution of the d&rk mass (10) and the formation of
_elliptlcal galaxies (11) have been alsco diiscussed in the scope
of the dynamical study of the groups of galaxies.

Nowadays, it is believed that there exists a
reasonable amount of observational data concerning to the
groups of galaxies, so that it is possible to try to extract
from them information about the galaxy mass distribution, the
mass-to-luminosity ratio, the velocity dispersion, etc. As a
matter of fact, Huchra and Geller have identified more than
hundred of groups in the northern hemisphere, by using the
so-called redshift space method. This method is considered
superior than the one used in previous works by other authors,
what seems to make the Huchra and Geller's catalogue the most
reliable one.

On the other hand, it is well known that there is



CBPF-NF-004/90

P

a difference between the mass-to~light ratio such as found in a
galaxy field, evaluated throught intrinsic quantities, and the
one encountered in groups of galaxies, which is calculated by
using global quantities. This difference is shown to lead to a
discrepancy of up about two orders of magnitude between the
group mass given by the virial theorem and the one calculated
from its luminosity (12,13). This missing mass has provoked
much speculation and boosted great interest in a dynamical des-
cription of groups of galaxies.

Basically, in order to understand this discrepancy,
we may assume either the observed groups are gravitationally
bound systems, with the masses given by the virial theorem, or
the groups are unbound and all of their masses can be evaluated
from the luminosity. In the first hypothesis, some fraction of
the géoup mass is in the form of dark matter, and in this case,
it can be located in the galaxies themselves (14) or distributed
somehow in the intergalactic space (10).

In order to clarify these and other correlated
questions, some computations have been performed by using n-body
.numerical simulation of groups of galaxies. To do that, one of
the main problem is to establish the group mass distribution
that we must use. In fact, previous works use either an uniform
mass distributiom, or masses randomly chosen from distribution
.which have no connection with the observed luminosity distri-
bution. For example, Aarseth and Saslaw (7) have used an inverse
square distribution, i.e. n(m) « m 2.

Both of these approximations seem quite unrealistic,

so we look for other mass distributions. The simplest and more
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natural way is to extend one step further the inverse square
approximation with free parameters to be fitted to the obser-
vational data. As a matter of fact, we propose a power-law dis-
tribution, i.e , Y(M) = M ', where T is to be found such that
the observational luminosity data is reproduced.

On the other hand, instead of a mass-to-light ratio
equal a constant, we can generalize a little bit this approxim-
ation and assume the mass to vary linearly with the luminosity.
Of course, this linear relationship is claimed to be hold only

in the luminogity range which we are interested in, i.e,

0.05 s L s 50.0

10

r

in 10 L units.

®

In this paper, we perform a n-body simulation of
group of galaxies, by using the Monte Carlo technique. This
permit us to obtain some relevant results, specialy the dis-
tribution of the velocity dispersion, to compare with the
observational data, and in this way we can obtain usefull in-
formation about the mass of the galaxies which build up the
groups.

The scheme of this work is the following:

-In Section II, we address the question of the initial
conditions of the dynamical problem. In Section III, we simulate

the groups by using the Monte Carlo method and in Section IV

we present our results and conclusions.

K
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II. INITIAL CONDITIONS

As mentioned in the Introduction, we assume the galaxy

masses obey a power-law, i.e.,

p(M) « MY, (1)

where 1T is a constant and M the mass of the galaxy. Further-
more, we assume that M is a linear function of the luminosity

L, i.e.,

M=oL+ B8 , {2)

where, o and § are parameters to be obtained by fitting to
observational data.

In Eq. (2}, beside the luminosity dependent term, there
is another one that remains unaltered when the luminosity is
changed. This 1ast term can take care fo the dark matter, which
is assumed here to be located in the galaxies, instead of
spreading in the intergalactic space.

Combining the Egs. (1) and (2), we obtain the following

luminosity distribution,

$(L) « (aL + B) ™" . (3)

The parameters ¢, B and 1T are obtained by fitting the
luminosity data of Turner and Gott (15) (Fig. 1). This gives
T = 2.8 and B/a = 5.8, It should be noted that B/a = 5.8 can
yield a difference of up about two orders of magnitude between
the mass given by the Eq. (2) and the mass given by the lumino-

sity-dependent term oL only, within the luminosity range that
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we have used in the fitting.

Unfortunately, the fitting is unable to determine the
values of o and &8 separately, because they depend on the
normalization constant. Therefore we must to resort to a dyna-
mical study of the group, in order to determine a and B8
uniquely.

To solve the equations of motion, we need initial
values foégthe position and momentum of each galaxy, as well as
the size of the group, which is assumed to be a sphere. The
value for the sphere size is chosen to be the same than the most
probable value of the mean pairwise separation of galaxies.
According with the Huchra and Geller's catalogue, this value is
equal to 0.5 Mpc. It should noted that the results will not be
changed@ significantly for other values slightly different from
0.5 Mpc. i

So, the galaxy positions are selected randomly within
a sphere of radius equal to 0.5 Mpc. In the case of the initial
velocities, we follow the Bahcall's (9) prescription, and each
of the three cartesin components of the velocity is randomly
chosen according with a Gaussian distribution whose peak is
located at the origin.

The multiplicity of each group is randomly chosen in
such a way that our assembly reproduces the samé multiplicity

distribution observed in Geller and Huchra's catalogue (6).

III. MONTE CARLO SIMULATION

Monte Carlo method is used to simulate the dynamics of
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groups of galaxies. Especifically, in each sampling we choose
randomly the multiplicity N of the group, according with an
observed distribution. Also, we select by chance, for each
galaxy of the group, the initial position and velocitf, such as
explained in Sect. II, and the mass, according with the power-
-law. The luminosity is straightforward obtained by mean of

the linear relationship with the mass. The system, then, is put
to evolve, obeying the equations of motion until the viriali-
zation equilibrium is attained. From this time on, -the system
can be regarded as a bound system of galaxies and the relevant
quantities, such as the velocity dispersion, calculated at this
stage, are registered and stored. The procedure is repeated
again and again, until the statistics is considered satisfactory.
In this case, an average of the calculated gquantities is per-
formed in order to compare with observatiéﬁal data.

To obtain the equations of motion, we consider, for a

group of multiplicity N, the following Hamiltonian:

N N MM,
=3 imyv? - | —pd (4)
i - i<3 (rij+s_)

where G 1is the gravitational constant, M, the mass of the
i-th galaxy,_ vy the velocity of the i-th galaxy with respect
to the center-of-distribution of the group, ;:j the inter-
distance and € is the softened parameter.

This Hamiltonian describes a classical n-body system.

The interparticle potential is modified by the introduction of

the parameter €, in order to take into account the finite size
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of the galaxies'(lﬁ). In our calculation, we have used & =
i = 0.01 Mpc, but for other values, we have obtained essentially
the same results.

The wvirial theorem states that

2 <P>_ + <W>_ =0 Yy (5)

t

where T is the total kinetic energy, W the potential energy

of the system and < > denctes time average. When Eg. (5) is

t
satisfied, the virial equilibrium is said to be attained and
in this case the system is bound. For convenience, we define
Y at the instant t, as
Y = TgT (6)

50 thét, Y = % corresponds to an instantadneous virialization
(virial equilibrium) of the system.

For each randomly chosen group, we calculate vy at
every instant of the dynamical evolution of the system. Fig. 2
displays Yy for different groups with multiplicities N = 10,
15, 20 and 30. It is noted that for t > 3/2 T T where

2,1/2 is the crossing time such as defined

T, = (3/5)1°% R /<v
by Gott et al. (1?) and Rh the harmonic radius, vy oscillates
around 0.5 indicating that, at this moment, the system is
close to the virial equilibrium. However, this does not occur
for all simulated groups. Indeed, in some of them, ¥y still
oscillates, but the average value diviates from 0.5. In this

work, we have only considered groups in which the deviation

is iess than 10%.
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To compare some dynamical quantities obtained in this
simulation with the observational data, we have used inform-
ations taken from a sample formed by 48 groups from Geller and
Huchra's catalogue (6), with multiplicity N 2 7. It should
noted that, in this case, all the groups have the crossing time
less than 0.2, indicating that they have a self-dynamics.
Assuming that the groups are bound systems, the virial theorem
provides a way to estimate the instant of system equilibration.
All the dynamical quantities of the system, then, cvan be cal-

culated at the equilibrium instant.

IV. RESULTS AND DISCUSSION

It was pointed out, in Sect. II; that the coefficient
o and B in Eq. {(2), can not be determine& separately by
fitting the luminosity data of Turner and Gott, but oﬁly
their ratio B8/a , which was shown to be 5.8.

In order to determine a and B uniguely, we have

L]
calculated the velocity dispersion, defined (5) as

N 1/2
1 2

where Vs is the projection along the z-axis of the velocity
of the i-th galaxy with respect to the center-of-mass of

the group. To be sure about the.virial equilibrium, the velo-
cities of each group in Eg. {7) was calculated at the instant
equal or greater than t = 2ﬂTc, being Tc the crossing time of

group.
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In Fig. 3, we display the histogram of o for three
different values of o (B & 5.80a), i.e, a = 8, 16 and 30 (full
lines). The number of simulated groups were 1000. We can compare
the calculated histograms with the observational data, such as
given by Geller and Huchra (6) (dot lines). It is apparent that
for a = 16 (B = 92), the calculated result fits better the data.

With these values of o and B , the mass range for
galaxies belonging to groups can be evaluated. In fact, with
the luminosity range considered in this work, i.e, 0.05 £ L <

50.0 in units of 10°

12 M

_Le, the mass range is 0.9 < M < 9.0 in
units of 10 o This range is in good agreement with resdits
obtained by other authors (5,9). It should noted that the three
decades in the luminosity range have shrinked to one decade
only ;p the mass range. This is a direct consequences of the
linear relationship between mass and lumin;sity we have assumed.

The mean value of the mass-to-light ratio for galaxies

is given by

L

£ _
I L-z(a+BL-1)¢(L) 4aL
L.
M. _ M
< L>= Lf | . (8)
J T 1% ) aL
Ly

where ¢ (L} is the luminosity distribution function.

Replacing o, B. an&m;' by their fitted values in
Eqg. (8), we fing <M/L> s 115 M@/LG . This result is close to
the value found by Geller and Huchra (6), which is around

170 M@/L@ .
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We can also estimate the mass-to-light ratio for
~groups as a whole. To do that, we assume the luminosity of the
‘group Lg as given by the sum over all galaxies in the group,

i.e., Ly = E L;. Thus using the Eq. (2) we obtain
i

-1

=16 + 92 N Lg ’

(9)

¢f1nz

M. 1is the mass of the group with the binding

where Mg = i

il e 11

energy neglected. In Fig. 4, we plot Mg/Lg against'Lg. The open
circles denote the results obtained from Eq. (9) with values of
N and I.g taken from Gott and Turner's catalogue (18). The
crosses denote the values given by Gott and Turner's catalogue
itself. In spite of the different behaviour of these two sets
of results, Fig. 4 shows that the mass-to-light estimated from
this model reproduces nicely the mean value of the observational
data.

In Fig. 5, we plot the kinetic energy spectra for
galaxies with masses within three different mass ranges:
(1} 90 < M < 91; (ii) 100 < M < 101 and (iii) 110 < M < 111
in units of 1010 M@. All these spectra display exponential
behaviour (dot lines). This exponential decay is independent
of the initial velocities and reflect a Maxwell-Boltzmann
behaviour. In order to obtain the temperature parameter, we have
fitted the energy spectra to the Maxwell-Boltzmann distribution.
The result shows that this parameter is roughly equal to

10 T = 10°2g3).

s2 (Ts2
In summary, considering a power-law mass distribution

and a linear function between mass and luminosity, we have fitted
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the parameters a, B and T to the cobservational data of lumi-
nosity and of velocity dispersion, obtaining T = 2.8, a = 16
and B = 92. The value of 8/a 1is 5.8 and this value can explain
the difference of up about two orders of magnitude between the
total mass and the mass given solely by the luminosity. This
very simple model may be very usefull to study the mass dis-
tribution in groups of galaxies, in particular, the problem of
missing mass, such as mentioned in the Introduction. Especifi-
cally, we have found the mass interval for the galaxies belonging
to groups (0.9 to 9.0 in units of 1012 Ma). Our results depend
strongly upon the available data given by catalogues. At the
present, the number of observed groups of galaxies is small

and gives a very poor statistics. With coming data, including

those of southern hemisphere, our simulation may yield more

precise results.
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Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4:

Fig. 5:

FIGURE CAPTIONS

Plot of the luminosity distribution for groups of
galaxies. The observational data from Turner and
Gott (15) are given by dots and the fitting with

T = 2.8 and B/a = 5.8 by the full curve.

Evolution of ¥y with the time t for groups with

multiplicity N = 10, 15, 20 and 30.

Histograms of the velocity dispersion o, obtained
from the Geller and Huchra's (6) data (dashed lines)

and from our simulation (full lines).

The mass-to-light ratio for groups Mg/Lg is plotted
as function of Lg. The results obtained from Eq. (9)
are denoted by open circles and the observational

data from Gott and Turner (18), by crosses.

Energy spectra of galaxies belonging to groups for

three different galaxy mass ranges.
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