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ABSTRACT

We discuss a certailn duality between the constraints appearing 1in
ordinary Lagrangian density and its first order counterpart for the gauged
Siegel chiral boson. It is demonstrated the equivalence, at the classical
level, of the two versions of the gauged Siegel chiral boson to Its
corresponding gauged Floreanini-Jackiw chiral besons. It is also argued
that the most general constrained Lagrangian density, that leads to a
bosonic field obeying a first order differential equation of motion and
preserve simultaneously Lorentz invariance, is Jjust the Floreanini-Jackiw

one,

PACS Numbers: 11.10.Ef, 11.30.Cp, 11.30.Rd.
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Recently Bazeia [1) showed, using a method developed by Faddeev and
Jackiw [2], that a pgauged version of Siegel’s chiral boson proposed by
Belucci, Golterman and Petcher [3,4] is equivalent, at the classical level,
to the gauged Floreanini-Jackiw {(FJ) chiral boson found by Harada [5,6].
More recently [7] a simple procedure to verify the Lorentz invarlance was
proposed for models where it is not expllcitly manifest, llke the FJ chiral
boson [5]. Based on this approach, it was proposed a new way to gauge the FJ
chiral boson, which was equivalent to another gauge invariant Slegel chiral
boson [7]. The latter corresponds to a sort of "chiral gauging", where
chirality is preserved under gauge transformations, as we will see later.

Here we intend to show that if one starts from the model proposed by
Beluccl, Golterman and Petcher and substitutes the gauged constraint by the
non-gauged one ends with that “chiral gauge-invariaﬁt" version of Slegel’'s
chiral boson mentioned above. We prove then the equivalence between it and
the corresponding new version for the gauged FJ model.

First of all, let us see a simple way to test the Lorentz invarliance of
Lagrangian densitles when it 1s not manifest. This was recently used to
introduce the second gauge invariant verslion of the FJ chiral boson [7]
quoted above,

We exemplify this approach by applying it to the case of FJ chiral
boson [S], characterized in its local version by the Lagranglan density

g o=e¢ -7 (1)
where ¢ and ¢' denotes aocp and 61¢ respectively. Performlng a Lorentz

transformation,
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¢ cosh{p) sinh(p) C
- . (2)
¢ sinh(¢) cosh{p) ¢
where ¢ is associated to the relative velocity between the two reference

frames. Substituting (2) in {1) we get,

2, = al)¢® - b + clelg ¢, (3)
with
alg) = sinh(p)(cosh{p) - sinh(yp)), {4a)
bl¢) = cosh{g¢)(cosh(p) - sinhiyp)), (4b)
c(p) = (cosh(p) - sinh(p))2. _ (4c)

As this "rotated" Lagranglan density is not constrained, we can easily

construct its corresponding first order Lagrangian denslity [2]{

- oA - y2 _ » 2
3¢1 =9 blel¢ (n¢ cle)¢’ )°/74alp). (5)
Since, as required by the equivalence principle, the two systems must be
indistinguishables, we impose that the new Lagrangian density obeys the same

constraint (n¢ = ¢') as the Lagranglan density (1), so (5) becomes

- 0o - [4a(¢p)b(v} -a- c(w))2]¢’ /2a(p). (6)
21 . ¢ .
¢
Substituting the variables af(¢), bl(g) and c{p), and using trigonometric

relations in (6), we obtain that
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2 =£ . (7)

So, this Lagranglan density is Lorentz invariant because under the chiral
constralnt requirement it Is unchanged by such transformation. Thils method
can be easily applied to the cases of the gauged FJ models [6,7].

However one could study a generalized constrained Lagranglan density

like

L X (8)

that leads to the equation of motion,

81(5180 * g281]¢ =0 (9}
which reduces to

(g180 + gzal)¢ = 0, (10)

after using appropriate boundary conditions. From Eq.(10} one can see that
it has the FJ chiral boson as a particular case. However, there still
remains an important question: is this model Lorentz invariant for arbitrary
values of g, and g, ? Before we address an answer to this question we
observe that, in fact, up to a finite renormalization, the expression (8)

can be rewritten as

E =age +¢2, (1)
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with a = gl/gz. This model can be obtained from the covarlant free boson
£ = (1/2)8 9 s, (12)

writing 1its first order Lagrangian density [2] and then imposing the

reduction of the phase space deflned by n¢ = o¢'.

Now, we apply the method above to verify the Lorentz invariance of the
Lagrangian density (11). Making the Lorentz rotation, the rotated Lagrangian
density becomes non-constrained, so that we can easily obtain the

corresponding Hamiltonlan

: -1r
H = [[a(kz +1) + kK2 - 1] (k® - 1)] kzu: - w9 [a(k‘ +1) ¢+

+ K - 1] v o k%2, (13)

where ¢ = log(k}, with ¢ being related to the relative veloclity between the
reference frames in equation (2). From the above Hamiltonian density one can
write down the first order Lagrangian density ln the rotated frame. Then,
keeping the constraint of the original frame in the new one, as requested by

the equivalence principle, we get for the difference between the Lagrangian

densities,
' -1
Kk - 2 2 _ v 1201 — w2y (a? _
B = B = (108 + D+ - 1] [0 -6 - 1)] (14)

that vanishes only (implying Lorentz invarlance) for « = t 1, precisely the

two chiralities of the FJ chiral boson.
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From now on we are able to_apply this simple method in order to verify
the Lorentz invarlance of any non-manifestly covariant model.

Let us now exhibit a kind of "duallity" between the constraints of the
two gauge Invariant FJ models. For this we write down the Lagrangian

density of Beluccl et al,
In 2 i 2
2 = (1/2]ap¢ 8¢ +ed ¢ A + (M /Z)AuA + A{3 ¢ + eA )", (15)

where 8 = 60 - a1 and A = Ab - A1. The corresponding first order

Lagrangian density is, as observed by Bazela [1], given by

B o= (8 ven) + e A - (e/2)(A)% + Ul 2)A A" 4

-1 (ng - ¢f)2. (16)

(1)
with ¢’ = 81¢. At this point we can obtain from the Euler-Lagrange equation

for the Lagrange multiplier, that

(ry - ¢ )2 = o, (17)

vwhich, at the classical level, is equivalent to the imposition u¢ = ¢’ (at

the quantum level they will be different, as a consequence of ordering
ambiguities). So, choosing the hipersurface in the phase space where the

constraint m, = ¢’ holds, we get the Harada version for the gauged FIJ

4

chiral boson,

b -

i + 2e¢' A - (/2087 « (/2)A A, (18)
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It is important to observe that in the usual Lagrangian density (5),
the constraint imposed is (3_¢ + eA_)2 = 0, and that when 1t 1s constructed
its first order Lagrangian density, the non-gauged constraint (u¢ -
¢')2 = 0 arises quite naturally. Besides, using the method described above
in order to verify the Lorentz invariance, one can see that the
corresponding constraint to be changed in (15) must be that of the opposite
chirality, (8+¢)2 = 0. This is in agreement with the cbservation in Ref.
[7), where it was verified that, starting from the left-handed CSM there
exist two relativistically possible constraints: n¢ = ¢' and %
eA ; and that for the right-handed one they are: u¢
eA . It is not difficult to verify that the model in (15), up to a finite

=—¢’ +

¢
= -¢’ and L ¢+

coupling renormalization, is the left-handed CSM subjected to the
constraint [8_¢ + eA_]2 = 0, so that I{its dual constraint must be
(8*¢]2 = 0. With this in mind we invert the order and impose this second
constraint in the ordinary Lagrangian density,

&= (1/2)89 Mo veopr (Mz/ZJA"A" + A8 6%, (19)

¥

that corresponds to gauging only one of the chiralities, so that

¢ ¢+ elx)
(20)

A A - (1/€)8 e(x)

as observed in [7]. Now the corresponding first order Lagrangian density is

given by
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£ =m (8¢) +2ep’A + M/2)AA - 1 (n, - ¢ - er ) (21)
L - e ? -

From its equations of moticn for the Lagrange multiplier we are lead to

the cholice of the constraint (n¢ - ¢ - eA_]2 = (), Then, after the

imposition of such a constralnt in {21) we get

g =4 -7

K ,
- ted s _+ (/2)A N, (22)

that was recently considered [7], and corresponds to the above mentioned
“chiral gauging”. Now we can do an analogous analysis for the case of the
linear constraint imposed by Srivastava [8]. Starting with the gauged

version of this model, where the constraint appears linearly,

£ = (1/2)5,¢ gy + e a ¢ A+ (MZ/ZJApAp + A8 + eA), (23)

L

we get, as stated by Bazela, for the first order Lagrangian density,

£ =7

. ¢&’ - (/2)¢ % e ¢'a_ - (e772)(A 0% + O /2)A A

2
- Al -eA) - {1/21[1: - - eA_] : (24)

Using the solution for the Lagrange multiplier A = u¢ - ¢, one can find

that

B, = (8.9) + elmy + $)A - (772)(a)% + (7224, (25)
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from which one can see that, for the Harada constraint (n¢ = ¢'), we
recover his result (18). If we impose the gauged version of the chiral
constraint [u¢ = ¢’ + eA ), the Lagrangian density obtained is not Lorentz
invariant as can be easily verified by using the method described at the
beginning of this work. At this point it is important to observe that the
criterion of Lorentz invariance is quite fundamental in such cases because,
since all of these Lagranglan densitlies are not explicltly invariant, one

must verify the invariance to obtain rellable results.

The "dual version" of expression (23) is given by
t=(1/2)09 9+ eapa + (a'72)A A + 108 ¢, (26)
that has as first order counterpart,

g o= omg - (2 e#'h+ OE2IAM ¢ Amy -4 4

-

2
- (1/2)[n¢ -A- eA__] . (27)

Substituting the solution for A (A = m, - ¢' - eA), and imposing the

¢
"gauged chiral constraint“n¢ = ¢’ + eA, ve get
B =g (0 4) +ed b A + (/2)AM (28)

Which is the model described in [7], that is Lorentz invariant. If on the
contrary we use Harada's constraint, the Lagrangian density obtained

becomes non-invariant under Lorentz transformations.
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It can also be observed that, as occurs 1n the usual gauged Siegel
boson, in this new manner of gauging the chiral boson (19), the non
explicitly covariant case (22) can be obtained choosing A = -1/2 in (19).
Note however that for this value of the parameter A, the Lagrangian denslty
becomes constralned, and so it must be carefully treated. We must be
careful also to make this choice after the imposition of the "gauged chiral
constraint”, in analogy to what occurs in the previous case [1].

As a final remark let us mention that all of the study above can be
repeated for the case of the right-handed CSM subjected to its
corresponding constraints: (6+¢ + eA*]2 =0 and (6_¢)2 = 0, that have as
their counterparts in the FJ-type models: m, = -¢' and =, = ¢ + eA,

¢ ¢ +

respectively.
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