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Abstract

We compare the two vacua associated with accelerating
observers to Rindler vacuum and to the Milne wvacua, by means of
Bogolubov coefficients. This confirm previous results of the
literature that say that two of these wvacua are equivalent to

Cartesian vacuum, and the three others behave like a thermal gas

in the Cartesian vacimim.

Key-words: Quantum field theory; Non-stationary coordinates; Bogolubov
coefficients.
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1. Introduction

In this series of paper we study a massive scalar guantum
field in coordinate systems that are non-static but alse simple
enough to allow the separation of the Klein-Gordon egquation. We
hope that the understanding of these non-trivial examples will
throw some light on the concept of particles outside the frame of
the Poincare group. In the first papar1 we described the separable
orthogonal coordinate systems of the two dimensicnal Minkowski
space. In the second paper2 we picked up one of these systems,
where stationary observers are inertial in the past and become
constant accelerated in the future. These observers are somehow
more interesting than uniform accelerated cbservers as they allow
to compare two particle definitions in the framework of only one
coordinate system: We defined a set of positive frequency modes of
the scalar field in the phase where the observers are inertial and
another one in the phase of constant acceleration. We found a
thermal spectrum of inertial particles in the accelerated vacuum
at a temperature proportional to the asymptotic acceleration of
the obserwvers, thus confirming the well known interpretation of
the Fulling effect3 in Rindlef coordinates. We also compared these
vacua to the cartesian one, that {s plane waves, and saw that the
accelerated wvacuum also has a thermal spectrum at the same
temperature but that the inertial vacuum is not thermal.

Here we investigate this problem further, first trying to
sample more information about the modes themselves, i. €., by
calculating the Bogolubov coefficients between them and the
natural modes of Rindler and Milne coordinates. These coordinate

systems are in a sense more adeguate than rcartesian one because
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they are the right asymptotes of our ccordinate systenm.

In a next paper we will finally conclude pha investigation of
this coordinate system by computing more physical magnitudes, like
the Feynmann propagator and the Hamiltonian. We will then proceed
by studying a coordinate system where the observers are inertial
in both time asymptotes only suffaring' a boost on their
velocities.

The paper is organized as follows. In the next section we
define all the Fock spaces we will handle with., In section 3 we

briefly compare them. The conclusions are taken in section 4.

2. Characterization of the vacuum states

We will study the quantization of a massive scalar neutral
field in curvilinear coordinate systems. For that we compare six
different Fock spaces which are constructed in the usual manner
through the complete function set next defined.

2.1. Minkowski Cartesian modes:
M 1 e-iCst.—ka

¥y Ct, » P — C1d
4ne

These are plane waves with mass m, wave vector k and positive
e 2

frequency £ = +7Y k + m . The basis is completed with their
complex conjugate {(which we will after this point omitd. The
concept of positive fregquency appears in, at least, two ways:

First, we note that i 88t is a Killing vector field and must have

vk as eigenfunction. Their eigenvalue is the freguency:

a

iﬁwk = £y e

We use the additional fact that the Hamliltonian operator is

defined by
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in such a way that it generate time CtD translatiens:

[qb(t.:o.wuo]ui -g—t¢ : ced

Second, we may ask that the positive frequency mode should go to

zeoro like exp C(-£td when t goes to -iw. The plane waves obey, of

course, these two criteria.

2.2. Rindler modes:

These modes are more easy defined in Rindler coordinates4

that is

t =X sinh a T
R R

» <50
x = X cosh a T
n R
for O < X"< @ and -mo < Ti < m, where we write
® 1 “ipaT,
= _¥_"_-_|
wp CT;. xna - sinh mu e KipCm xn) ced

where Kip is a modified Bessel functions and w0, These modes were
first used by Fulling in his PhD thesis, and have since been well
studieds. Rindler coordinates are adapted tco observers with
constant acceleration, in the sense that the coordinate lines
describe world lines of constant acceleration. The field O/OT; is
a Killing wvector field, fact that allowed Sanchez7 te solve even
the inverse problem of finding the coordinates transformation when
one is given the vacuum spectrum. v is the frequency associated to
this time in the two previous senses, as you may verify.

2.3. Sommerfield modes:
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These and the next are the modes associated to geodesic
obhservers living in Mlne universea. They are indeed more easy

written in Milne coordinates:

t =Y cosh a X
Y Y |

’ C?
x =Y sinh a X
W L

for O < Yu < w and ~-m < x“ ¢ . It is useful to introduce another

variable Tu’ defined by:

Yy = L1 e . c8d
a

This mapping covers the fuiure light cone. In this paper we will

be also interested in the past light cone, where

t = - Yu cosh a xu
’ C7'd
x ==Y ginh a X
» ™
and
1 -aTu
YH = ; e . 8"

Here the two freguency definitions split: the time coordinate
lines are not trajectories of a Killing vector field and the modes
are not eigenfunctions of B/OT“. What we can do is twice: first we
may, like Sommerfieldg. choose the first freguency concept by

defining a dilatation operator 9 as

< 2aT
1 o9 a9 [¥i 2 2
»=% {[ﬁ] + _ﬁ_] + e m¢]dx <o
M L
such that it generates time translations
_, 2¢ |
[ ¢ CTu.x“)..ﬂ CTu)] = { 3—Tu . €10d

If we expand ¢ in the basis va. w:). given by
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s -1 ivax“
v €Y , X DO r ) J_ Cm Y O. €11d
v M M 2 ¥ sinh niv| id “

and substitute it in the dilatation operator it becomes, in the

light cone:
oo
»C Tu" - ) x 1.2 .[ dv |v] [a+(v) aCd + aCwd a+Cv)] 12
-m

You may check this using the expression
ialT
@ M

lim J x . c13>
T+ - ix 23X i o+ 10

These modes may be called positive “dilatation” frequency modes.
Second you may, with di Sessaio. ask that +the positive

frequency mode should follow our second criterium. The problem is

that these two criteria lead to two different modes ws. The first

is ws and the second, wD. we next define.

2.4. Di Sessa modes:

_ np/c ipaX
Pey . X, i e e  H{Zem YD C14d
P 2 ve. P

{

wher e Hi:;is a Bessel function of the third kind. You may verify

that di Sessa condition is satisfied:

lim vy H;’%—1 moo = O 18>
Y » -imw P P
M
2.5. Inertial modes:
The next two modes were defined in paper II of this series
and are adapted do observers that become smoothly accelerated. The

coordinates are defined as



CBPF-NF-003/89

—6-
t + x = 27a sinh a € T; + x‘)
. cien
t ~“xz-lrsaexp ([ —a( T; - x‘a )
Ve may see that the proper acceleration
" 1
2 M 2
a=| g, 2% 23 17>
H Ds Ds

of a stationary observers parameterized by t” = CTA. XA) is given

by:

Eax‘
a e
o = 572 Ci1B)

[ -caT 2aX ]
A , A
e + e

To write the modes it is better to use the variables CY‘. Z‘):

Y 17a exp ¢ —a T D
{ A A 1o

Z
A

ira exp € +a X‘J

The modes are then v; and v:. Ve define v; as:

2noc
X i ol - e J (1)
v, <Y, . 2D :=3 / — Ho m YD K _(mZ)> €20

This first mode has a quasi-classical behavior in the asymptotic
region. By guasi-classical, a concept that, in this context, was

exactly defined in previous paperii. we mean:

1im wr x exp (-1 om Y O 21
o A
Y‘-b o

This modes are positive freguency following di Sessa’s criterium.
2.6. Accelerating modes:

These are defined as

A
Z N .=
v, CYA. -

Al
L
=~

> Z > >
i CRYD K CRZ czz

and are guasi-classical in the accelerated region:
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1im ¥ o« !"T 23>
Y‘-o (o]

They satisfy Sommerfield definition of positive frequency.

3, Comparison of the vacua

Now that we have well defined all modes we are interested on,

we go on comparing them. It is well known:

M R” e _ '

Here you may speak about a temperature because the equivalence
principle allows you to compare the temperature measured in an

inertial system with the temperature measured in the proper frame

of tLthe observer:

e = /goo eo cesd
so that the temperature is proportional to the proper acceleration

Ca = 1-X D
" R
o
© = c2ed
an

We also know the number of Milne modes particle distributions

in the Minkowski wvacua:

M = e _ 1 _
| <vw.. ¥> 17 = gz e : 27>
and
| <, ¥ % = o 28>
k'’ p> ’

for Sommerfield quantization Milne universe behaves like a big

bang, where the temperature © is given by
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e = = [ ] . <20

so that as Tu'. -w, & + o and as '1‘“ “ o, € » 0. di Sessa modes, on
Lthe contrary, lead us to zero temperature.

In a previocus paper we calculated the Bogolubov coefficients
between Minkowski and v:-mode and between Minkowski and w;-modes:

i
M A 2 1
I <""k * "'1) | = eneca 92111'

300
-1

Cnote that the associated proper temperature is proportional to

a ) and
[

N b b= -8 o 2 CCe~klr2ad )
| (vk. v°> | sinh no T Re [ T=155% ] (31D

This resocnates in Ce-kd)/2a and o for € » k and goes +to zero for
E ~ k.

We also know the relationships

s D 2 _ _
| <y . wp) | = Smo sty Fo») 32>
e - 1
and
| < Aot ;2 = —1-—— 6%21'—03 (33
¥y o> eana -1 -

The new results we are presenting in this paper come from the

comparison of the accelerating vacua with Rindler and Milne ones.

They are:

R A 2 _
| <wp. v.> | = O. 34D

This is because the proper acceleration of gaussian observers

¢oincide in the asymptotic region where both modes are
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quasi-classical. Second we have:
| <, wi> I = - & 1-0d ¢35>
Ty a> .Ena -1 ’

Finally we have:

1}
o

3 A, (2
| <v,. ¥ 1 c38>

and

1
o

| <l vl 1® 37>

4. Conclusion

If you put this in a diagram. you see that this concept of

temperature may be seen as an equivalence relation.

SOMMERFIELD — 42 = O ACCELERATED — 49 = O — RINDLER
A® » O A0 x O _ A® » O
D1 SEssA A9 = O — INERT1AL — A8 = 7 —  MINKOWSKI

The only exception is the Bogolubov coefficient between the
inertial and Minkowskl modes, Cast.agninola suggested that this
result is due to the fact that the associated observers fluid is
not rigid. Notice that we didn't compute the Bogolubov
coefficients between Sommerfield and inertial modes and between Di
Sessa and accelerated modes because the positive frequency
definitions are incompatible sc that it will be non sense.

In a next paper we will check this results by calculating the

Feynmann propagator, Wightmann functions and the Hamiltonian which

are needed to construct a detector.
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