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For some d-dimensional lattices, we show that

1 ; = ,mmére z and zD are coordination number

2 Z d

of a lattice and its dual, respectively. In two dimension,
we show that the weighted avefage of ZPe for the trianghlar
and hexagonal lattices satisfies a universality hypothesis.
In dimensions d 2 3, the universality hypothesis implies a

duality transformation.
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In the previous work, we have extended the concept of duality
to three dimensions and shown that the fcc and diamond lattics
are dual to each other (Chad 1982a). In_fhis Letter, we show a
possible way for constructing a_particular type of dual lattices
in hyperspace and'establish a relation for the coordination
number between such lattices. A duality transformation for bond
percolation in d dimensions is shown to be the conseguence of a
universality hypothesis,

In three dimensions, a dual lattice is defined as the
lattice formed by connecting the sites that are placed at the
center of each elementary polyﬁedron on the original lattice. A
dual lattice in d dimenéioné cah be considered as that formed
by connecting sites placed at the center of each d-dimensional
elementary polyhedfou on the ofiginal lattice (Wegner 1971).
Although it is difficult to visualize lattices in hyperspace, we
can still discuss a particular type of dual lattices that is
analogous_to the triangular and hexagonal, as well as the fcc
and diamond lattices.

The simpleét regular polyhedral in d dimensions is consisted
of d+1 bonds incident from a common point. We assume that there
exlsts d-dimensional lattice that can be cowvered by such

polyhedrals; thén the coordination number of this lattice is

z=d + 1. {1)

The structure of such a lattice can be visualized as
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repetition of polyhedrals suéh that each of the end points of a
constituent polyhedral is connected to those of the other d
polyhedrals. Froh this lattice, we can'obtain i£s.dual by.
using a transformation sim#lar to the star—triangular and
tetrahedral-pyramid transformations (Chao 1982a), i.e., we
decimate the sites at the center of each coonstituent polyhedral
and connect the remaining sites by new bonds. Thus, each
constituenf polyhedral on the original lattice is replaced by

a regular polyhedron with d+1 conners on the new lattice. This
new lattice is the dual of the oriéinal one, sincé its
constituent polyhedrbn is the dual.of the'corre3ponding
polyhedral. Therefore, each bohd on the original lattice is now
replaced by 4 bonds on the dual lattice, because there are d
bonds joining a conner of such d dimensionai polyhedron to the
other 4 conners. Tﬁus, the coordination number of the dual

lattice is

2’ = zd = d(d«1). (2)

From (1) and (2), we obtain a simple relation between

coordination numbers for the dual lattices:

(3}

]
]
=
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This relation can readily be verified for the triangular-
honeycomb and fcca-diamond lattice pairs. Furthermore, it 1s
consistent with z=2d for the square, simple cubic and hypercubic
lattices that are'self—dual..Thereforef eq. (3) is more general
than just for the particular dual pair we are considering.
Because of the importance of coordination number in determining
the percolation threshold for bond percolation on a lattice, we
expect that (3) to be useful for studying bond percolation.

For bond percolation, it has been observed by Vyssotsky et
al (1961) that the product of z with the percolation threshold
Po is approximately constant for lattices in d=2 and é through

the following relation:

~ _2ad | (4)

ch, required

Therefore, the mean humber of bonds per site,
for the onset of percolation seems to be universal to some
extend. Table 1 shows that “Pc is exactly 2 for the square
lattice and differs from this value by about 0.04 and 0.08,
respectively, for the honeycomb and triangular lattices. It is
therefore puzzling why the approximation {4) becomes exact for
the square lattice but gives large errors for the other two-
dimensional lattices. Based on (3), we show in the following

that a universal relation for ch can be established with respect

to dual lattices.
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Consider the duality transformation which can be written as

=1, for 4d4d= 2. (5)
Now, we divide (5) by (3) to yield

zD(zﬁgl + z(znpg)_

D
Z2+2

2, for d4=2. (6)

Thus, the weighted average value ofIZPC for the two-dimensional
dual lattices satisfies universality. The validity of (6) is
readily vaerifiel for the triangular-honeycomb lattice pair as'well

as for the self-dual square iattice.
In d dimensions, the universality hypothesis.can be written as
zD(sz) +-z(sz2) d

= = . (7)
z+zD' : d-1 '

Unfo:tunately, we cannot make an exact varification of (7} for
d 2 3, since exact values for Pg are not available. Nevertheless,
if we use the estimated values 1is£ in Table 1 for the diamond
and fcc lattices, we obtain 1.5201 for the left;hand side of (7).

Thus, the discrepancy from universal value (1.5 for d=3) for the
weighted average 1s considerably smaller than that for each
individual value for the fcc and diamond lattlces illustrated in

Table 1. For simple cubic lattic, zp, = 1.4952 using Pe =
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0.2492 + 0.0002 (Wilke 1983).

The universality hypothesis (7) implies a duality transfor-

mation

D o -
p+p . 1+ PPy 1.
e : p $ 3:7). (8)

which leads to

P. — 1
¢ < zEn )

for simple hypercubic lattices. Equation (9) has alsc-been
discussed recently by Rirkpatrick (1979) and by Chao (1982)p), 1In
fact, the Pe values predicted by (9} are only.slightly higher
than those estimated from series expansicn of Gaunt and Ruskin
(1978) by 0.003 to 0.007 for d = 3 to ?. Gaunt and Brak (1984}
have pointed out that the expansion of (9) with the parameter
o = 2d-1 does not agree with that of Gaunt and Ruskin (1978).

It is therefore interesting to try to understand to what extend

our hypothesis may be valid foy d = 3.

I would like to thank the kind invitation of Professor
T. Kodama and Dr. C. K. Chung to visit thé Brasilian National

Physics Research Center (CBPF).
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TABLE 1
lattice z P ZP¢
square 4 .5 2
triangular 6 0.3473 2.0828
honeycomb 3 0.6527 1.9581
5¢ 6 0.2492 1.4952
fcc 12 0.1185 1.4220
diamond 4 0.3882 1.5528

Table 1. The coordination number 2z, bond percolation threshold

Pc and mean number of bonds per site for the onset of

percolation “Po for some two-and three-dimensional lattices,

The value of P

c for sc is the Monte Carlo estimate of Wilke
(1983); fcc 1s the estimate of Cox and Essam (1976} and

diamond lattice is taken from Essam (1972).
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