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ABSTRACT

We study the eritical properties of the 3-D
quantum Heisenberg ferromagnet with random anisotropies;
that is, the coupling between any pair of nearest-neighbouring
spins can be either isotropic (Heisenberyg) or anisotropic
(Ising-or XY-like) at random, Within a Migdal-Kadanoff approxi-
mation we obtain the full critical frontier and correlation
length critical exponents. We found that the isotropic Heisenberg
model is unstable (in the context of universalityv classes) in

the presence of a small concentration of couplings with lower
symmetry.

Key-words: Heisenberg ferromagnet; Random anisotropy; Criticality;

(uantum system.
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Antiferromagnetic systems with random anisotropies
have attracted a great number of experimental (Katsumata 1983,
and references therein) and theoretical (Aharony 1983, and
references therein) investigations over recent years. In these
systems the coupling between any pair of neighbouring spins
can have 0(n) symmetry with n being either n; or n, at random.
For instance, Fe(i_p)CopBrz behaves essentially as an Ising
antiferromagnet when p=0, whereas for p=1 it behaves as an XY
antiferromagnet (Katsumata et al 1984). On the other hand,
Komoda and Pekalski 1981 considered a ferromagnetic system in
which the magnetic interactions were either Ising - or
Heisenberg ~ like and obtained the phase diagram (Tc as a
function of ps,the site concentration) within an effective
Hamiltonian method. Furthermore, Pekalski (1977, 1984) and Mariz
and Tsallis (1984) investigated a generalized model in two-
dimensions by series expansions and by Real-Space Renormaliz-—
ation Group (RSRG) methods, respectively.

The purpose of this letter is to study the critical
properties of a Heisenberg ferromagnet with random anisotropies
in three dimensions, through a Migdal-Kadanoff (MK) approximat-
ion (Migdal 1976, Kadanoff 1976). We consider the following
dimensionless Hamiltonian.

éag. _ zZ z X X y y']
ii§j> Kij(1+aij)cioj +(1—ﬁij)(ciaj + aioj) (1)
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where K, = .'t’j/kBT(Jij is the exchange coupling) is the same
for all bonds, the o's are Pauli spin operators, and the
sum runs over pairs of nearest neighbouring spins on a three

dimensional simple cubic lattice. The anisotropy parameter

ﬂij is a random variable and the following distribution is

associated with each bond:
PAK;5,8,5) = [p8(a,5-8) + (1-p)6(ay )] 6 (K 4-K) (2)

with Ae[-1,1] and K»0; there is no correlation between
anisotropy in different bonds.

Withiﬁ the MX approximation, adapted to quantum
systems (Suzuki and Takano 1979; Barma et al 1979; Stinchcombe
1979,1981; Takano and Suzuki 1981, Castellani et al 1982,
Tsallis et al 1984) a Renormalization Group transformation is
obtained by first decimating (b-l}spinsalong each of the d
cartesian directions and then combining them in "parallel”.
Thus, for a linear scaling factor b=2, a 3-site chain is
decimated into a 2-site chain by performing a partial trace on
the internal site, in such a way that the partition function
is preserved, that is,

s
%12 %123
e =Tr e
3

(3)

where
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(s) z 2 X X Yy
_ (s) (s) s8] \ _al8) \
%12 = Ko + K [(1+£i 10102 +{1-4 }(0102 + 0102) (4)

(s)

where K0

is an additive constant which makes possible Eq.

(3); the label s means "series combination® and

zZ 2 2 z XX, y y)_l_
= K[ (1+8y)0 0 +(1+45)0 0 +(1-Ay){0c 0 g 0O :
123 1 3 3 2 1 3 1 3
XX YY
+ =4
(1 2)(03024'0302) (5}

vhere Ay and 3, are distributed acqording to Bg{2});the fact that KijEK
has been used explicitly.

The evaluation of the trace in Eg(3} is carried ocut through
a procedure previously developed(Caride et al 1983, Mariz et al 1984a):

The density matrices are expanddd as

%(S)
12 X X . Yy A A

e = a(s)+ b(B') (c.o +ad0 )+ c.{s) g g (6)
12 1 2 1 2 12 1 2
and g
123 x x Y z2 z
e =a+ {bij(ol oy j) + ¢y oicj} - (7)

1<j

where the sum runs over all sites of the 3-site chain.
The parameters K(OS), K'{s)and Q{S) can be determined

analitically (Caride et al 1983; Mariz et al 1984a) as

functionsof a(s)_'b(s) and c (8) . The trace of Eg.(7) yields

12

a(s)=2a,b(_s_)=2b . C (5}=2c the remaining terms wanish since
12 12 12 12

they involve a term in o;‘. The coefficients a, b.’1 and c,
2
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are determined numerically as functions of K, A, and 4,, and
finally we obtain the recursion relations Kss)(K,&l,Az),

xS (K,8,,4,) and A(%) (k,,,4,). At this point one should
note that the procedure outlined above to take the partial
trace has been used in the study of the non-random anisoﬁropic
Heisenberg model in 3-D through an appropriate two-terminal
graph (Mariz et al 1984b). Nevertheless, the process of
configurational averaging makes this method inapplicable to

that graph for the present problem in view of very long

computational times involved.
Neglecting commutation aspects in the bond-moving

step of the approximation we get (see Mariz et al 1984a) for
a "parallel® combination of four branches (each of them consg
tituted by two bonds in series)
~f . (2) (2),} - (8} (s) {(s) (s)
K dhs w ’ . » B K +
‘[{KIJ } {&13 } ) K2 + K3 + Kh (8)

(s), (8) {s), (s) {s), (s) (s)y (8)
wf o)y . (0) ] Ky : + K, A, + Ky~ A4 + K, 8, _
(P, ) - ) 5)
K
where [Kis),A£S)] denotes the series result associated with

the r-th parallel branch of the graph (r=1,...,4), which

contains, &s a whole, eight bonds identified by %=1,...,8.

Starting from a binary distribution (for each of

these bonds, see Eq.(2)), the transformed distribution

8
LI ) - . = (L) (2) : - -~
B(R;;0845) I [dxij an; e [KE?Z.&%)” 6 (ky;-K)6 (8 ;-E) (10)

L=

will no longer be of binary form.Since, under iteration these
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distributions will evolve to more complicated forms, one has
to resort to further approximations. One of the simplest
approximations, which retains the essential physical features
of the problem, consists in forcing the transformed distri-

bution back into binary form, i.e,

' - ' ZATY 4 ! . K . {11)
PY(K;00;,) = [p 8(8;;-4") + (1-p lataij)]atxij K')

j'i
To obtain the three RG equations (p'.x',4'), we

choose to match the averages of K, & and (A2) over the

{(forced) binary and over the (actual) transformed distribut-

ions, that is,

Kij7pe ™ Kij7p = 9, KA (12)
<aij>r' = <&'i.j >§ = g2 (p,R,A) - (13)
<52> m<AZ 5. = {p,K,A)
ij po ij °p = 3PN, (14)
vhere <..... > denotes configurational averages with the subscripts

referred to both distributions.While His. (12) and (13) are the most
natural choices, Hj.(14) has been proposed in order to decouple the randam

variables p and A.
The left-hand-side of Egs.(12)-(14) are easily worked cut to obtain

K'=g (15}
Al = 93/9 (186)

(17)

9

]

Le]
S

&
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It is worth noting that when p'=0 or A'=0 we
recover the isotropic Heisenberg critical temperature, in
spite of the apparent indeterminacy of Eq. (17).

Solving the recursion relations for critical
fixed points (K*,A*,p*) and eigenvalues (ki), we obtain

Table 1 where the critical exponents, have been calculated

through
. inb .
i T any, TR
i
where li are relevant eigenvalues (Ai>l); T and A respectively

correspond to the thermal and anisotropy correlation length
critical exponents.

One only has relevant fixed points in the plane
p=1, as shown in Table 1 and Fig. 1. For c¢omparison ,
we also quote the results obtained from series expansion (Domb
(1974), Rushbreooke et al (1974}, Pfeuty et al (1%974), Betts
(1974)). Our p=1 results are the same as those previously
obtained by Takano and Suzuki (198l), as expected. The pure
XY fixed point has a residual Ising interaction {(A* # -1) and
the low temperature XY region (4<0,p=l}) is driveﬁ towards the
zero temperature Heisenberg fixed point undexr iteration of
the RG; this spurious behavior can be attributed to different
ground state properties of the 3-site chain and the rencrmalized

2-site chain, as pointed out by Castellani et al (1982}.
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In Fig.l we show the critical surface (full lines)
which is the boundary between the ferromagnetic and paramagnetic
phases. One expects that this critical surface is properly
described within the present approach, since the spurious
behaviour for A<0 only dominates the low-temperature region.
In fact, points in the random region (p#l) of the critical
surface are attracted (under RG iterations) to the pure XY
(Ising) fixed point if 4<0 (A>0). Thus, three Universality
classes are present, as expected: (i) the ABC and BH critical
lines have Heisenberg model exponents; (ii) the whole surface
with A<0, p>0 belongs to the:XY Universality class; (iii) the
whole surface with A>Q, p>0 belongs to the Ising Universality
class. This means that a small amount of bonds with lower
symmetry embedded in a majority of Heisenberg-like bonds is
enough to change the 0(3) symmetry.

In Fig.2 we show the critical temperature as a
function of the anisotropy parameter A for several concentrat-
ions (p) of anisotropic bonds. We see that for small p there
is only a small change in the critical temperature as A varies
from 0 to +l1, although there is a change in Universality
classes as mentioned above. A similar behaviour is present in
the plots of the critical temperature as a function of p for
several values of A (Figs. 3 and 4). One should note that the

curves Tc(p) obtained by Komoda and Pekalski (1981} have
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inflection points which are absent in ours (see Fig.3)., This
difference probably comes about because their Hamiltonian
allows for three different couplings as the site concentration
Py varies from 0 to l: Ising (with probability psz), anisotropic
Heisenberg (with probability 2ps(l-ps)) and isotropic Heisenberg
(with probability (l-ps)z). In our formulation, Ising and

anisotropic Heisenberg couplings are treated on equal footing.

We are currently investigating a more complex model, where a
ternary (instead of binary) distribution is introduced for
the couplings: p, is the bond concentration of Isingor XY interactions
(8;5=t1}, p, is that of anisotropic Heisenberg interactions (8, =a¢[-1,1])
ard finally p3 is that of isotropic Heisenberg interactions (ﬁij=0)(p1+P§+p3=l)‘
The treatment of such a model within the present formalism
(which recovers, for Pl=0' that treated here) would allow for
interesting comparisons with the case focused by Komoda and
Pgkalski (1981) (which corresponds to pl=p; , p2=2ps (1-p,) and
p3=(1-p5)2)-

As a final remark, it would be interesting to extend
our analysis to the antiferromagnetic case, in order to study
the intermediate phases present in some antiferromagnets with
random anisotropies (Katsumata (1983)) which come about as a
result of competing interactions together with random field

effects (Aharony 1983).
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To summarize, we studied the finite temperature
critical behaviour of the three-dimensional quantum Heisenberg
ferromagnet with random anisotropy . We found, in accordance
with intuitive expectation, that the isotropic Heisenberg
critical behaviour is unstable when a small concentration of

couplings with lower symmetry are present.
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TABLE AND FIGURE CAPTIONS

Table 1 - Critical fixed points and correlation length critical

Figure 1 -

Figure 2 -

Figure 3 -

Figure 4 -

exponents obtained from Migdal-Kadanoff RG; For
comparison series results are also shown. Numbers
in square brackets for the XY model represent the

intersection of the critical curve with the line A=-1,.

The full critical surface (in the p,4, kBT/J space)
of the 3-D quantum Heisenberg model with random
anisotropy. The non-trivial Ising (I}, Isotropic

Heisenberg (H) and XY fixed points are shown.

The critical temperature OkBTc/J) as function of the
anisotropy parameter 4 for several concentrations of

anisotropic bonds (p).

The c¢ritical temperature GkBTC/J) as function of the

concentration p for several values of 4>0.

The same as Fig.3, but with 4<0.



*an values reproduce those associated with the pure model

TABLE 1
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CRITICAL FIXED .
MODEL POINTS AND MK SERIES
EXPONENTS
*
. 'kBTC _ (1)
A, 7 (1,7.66) (1,9.09)
. Ising (1)
Vp 1.06 0.63
kn?* . (2)
[n*, BL ] (0,2.91) |{(0,3.33)
Isotropic (2)
Vip 1.39 0.72
Heisenberg . (3)
A
= 1.56 1.25
=3,
(8" e T0/3) | (0.88,6.80)] (-1,8.00)*)
XY [-1,7.26]
' : (4)
Vip 1.16 0.67

(p=1), firstly obtained by Takano and Suzuki (1981).

(1)
(2)
(3)
(4)

Domb ~ (1974)

Rushbrooke et al (1974)
Pfeuty et al (1974)

Betts (1974}
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