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ABSTRACT

Convexity properties of convex subsets of real vector spaces

are here presented.
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N* is the set of all strictly positive integers, R} is the set of all strictly positive
real numbers, | and J are respectively the closed and open intervals of real
numbers of extremities 0 and 1. A convex set X is defined by a map that to

everyn € N*, ; € Ji=1,...,n), Ay + -4+ X, = 1, z; € X(i = 1,...,n),
associates a convex combination Ayzy + -« + AnZn = EISiSu Aiz; € X so
that: (1) Commutativity. We have Els-’su Ao(i)To(i) = 2195“ Aiz; for any
permutation o of the set {1,...,n}. (2) Associativity. We have
3 ( 3 4\.',-:1:;,-) = Y (ipy)zi
1€5<n 15i<m; IISS':SS"::

for n € N*, m; € N*(j = 1,...,n), Aij €EJ(i=1,...,mj,j =1,...,n), Aj+
At Admpi=1[=1,...,n), 4, € JG = Loon)ym++p=11r;€X(j=
l,...,m;,j = 1; .-+»n). Distributivity. We have \;z+-- -+ Az, =z forn € N*,
A;€J(E=1,...,n), A1+ -+ X, = 1. A subset Y of X is a convex subset of X
vmmAwppu+AwneYﬁnneNnMeJG=L“anMA~~+Aﬂ=L
¥vi EY(i =1,...,n). ThenY is a convex set. A convex set map f: X =Y
between convex sets is defined by f(A 2y 4+ - +Anzs) = AMfi(za )+ Anfalza)
forneN*, X € J(i = 1,...,n), .'\1 +-votAp=1, z; E.X(i =1,...,n). The
set CS(X) of all nonvoid convex subsets of a convex set X is a convex set if we
define Ay Xy 4+ 4+ An Xy = { M2y + -+ + Anzs iTi€X(i=1,...,n)} € CS(X)
forneN*, iedi=1...,n), s +---4+A, =1, X; € CS(X)i=1,...,n).
We have the injective convex set map z € X — {z} € CS(X). |
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PROPOSITION 1. Let X be a set where to every ) € J, 21,22 € X, we associate
a’convex.combination (1 — \)zy + Az € X. There is a necessarily unique
convex set structure on X defining these convex combinations if and only if:
(1) Commutativity. We have Az + (1=A)zy = (1 = A)zy + Az, for X € J,
1,72 € X. (2) Associativity. We have (1 ~ p)i(1 = M)z, + Azy) + pzy =
(=2 - Wzs + DA =~ ) + ol [z + yiay] for A € 4,
Z1,%2,73 € X. (3) Distributivity. We have 1- A)z_ +Az =z for A € J,
z€ X.

Let us recall that a convex cone C is a set where we are given an addition
(#1,22) € C X C + 21 + 2, € C that is commutative and associative, as well as
a multiplication (A,z) € R.fl. X €+ Az € C that is distributive on both sides,
associative on the left side, and such that 1 € R} behaves as the identity map of
C(*). A subset D of C is a convex subcone of C when h+y2 € Dfory;,y: € D,
and Ay € D for A € R%, y € D. Then D is a convex cone. A convex cone map
f:C—>D between convex cones is defined by f(z; + z2) = f(z1) + f(z2),
f(Az) = Af(z) for A € RY, 2,2),72 € C. A real vector space is a convex cone.
A convex cone is a convex set. A convex cone C is vectorial when it is a convex
subcone of some real vector space. This occurs if and only if C satisfies the
cancellation rule for convex cones (CRCC): X zy,2z2,23 €C, 21 + 23 = 21 + z3,
then z; = z3. A convex set is vectorial when it is & convex subset of some
real vector space. A convex cone is vectorial as a convex cone if and only if it
is vectorial as a convex set. H X is a convex set, CS(X) fails to be vectorial
if and only if X has at least two elements. If C is a convex cone, CS(C)is a
convex cone if we define X; + X; = {z; + 22;7, € X,2, € Xz} € CS(C) for
X1,X2 € CS(C), and AX € {A\X;z € X} € CS(C) for X € Ri, X € CS(C).

We have the injective convex cone map z € C ~ {2} € CS(C). This convex
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cone structure on CS(C') defines the previous convex set structure on it.

PROPOSITION 2. (1) Every convex set is a convex subset of some convex cone.
(2) A convex set X is vectorial if and only if it satifies the cancellation rule for
convex sets (CRCS): A € J, 21,122,723 € X, (1-A)z1 4+ Azz = (1— N)ay + Azs,
then z3 = 23. (8) Every convex set (or cone) is the image by a surjective convex

set (or cone) map of some vectorial convex set (or cone).

PROPOSITION 3. (1) Let C be a convex cone and z € C. Either the map A €
R3 = Az € C is injective, or else it is & constant map, that is Az = z(X € RY),
which occurs if and only if 2+ x = z. (2) Let X be a convex set and z,,z3 € X.
Either themap A€l (1 - XNz + Az € X is injective, or else its restriction
to J is a constant map. (3) Let C be a convex cone, and z,,22,23 € C. If
T3 + Az = x1 + Az3 for some ) € R}, this equality holds for all \ € R3. (4) Let
X be a convex set, and z3,22,23 € X. (1= \)zy + Az = (1 = X)zy 4 Az3 for
some XA € J, this equality holds for all ) € J.

PROPOSITION 4. (1) Let C be an ordered set which is an inflattice. Define
z1 + #2 = inf{z1,22} € C(z1,22 € C). Then C becomes an associative,
commutative, additive monoid satisfying z + r = z(x € C). Moreover, z; < z,
if and only if 23 + z2 = z)(21,72 € C). Conversely, let C be an associative,
commutative, additive monoid satisfying z + z = z(z € C). We obtain an
order on C by z; < z, when 2, + z; = 2,, and C becomes an inflattice where
inf{z),22} = 2y +z2(21, 22 € C). Moreover, C has a zero as an additive monoid
if and only if C has a largest element as an ordered set, the zero and the largest
element being necessarily equal. (2) Let C be an associative, commutative,
additive monoid. Introduce the constant multiplication (), z) € Ry XC Az =

z € C. Then C becomes a convex cone if and only if z + z = z(z € C).
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PROPOSITION §. (1) Let X be a convex set. . There is a convex cone structure
with constant multiplication on X defining the given convex set structure if
and only if the map A € J = (1 — A)z; + Azp € X(21,72 € X) is always
& constant map. That convex cone structure is unique because z; + z3 =
(1= X)zy + dz2(X € J,21,22 € X). (2) If X is a convex set whose power is
strictly less than the continuum power, there is a unique convex cone structure
with constant multiplication on X defining the given convex set structure. Every
convex cone whose power is strictly less than the continuum has a constant
multiplication. Therefore, a convex set whose power is strictly less than the
continuum power, a convex cone whose power is strictly less than the continuum
power, and an inflattice whose power is strictly less than the continuum power,

are three equivalent forms of the same concept.

PROPOSITION 6. Let f : X = Y be a surjective convex set map between nonvoid
convex sets. It defines an equivalence relation on X whose equivalence classes
are f~Y(y)(y € Y), that is compatible with the convex set structure of X in the
sense that: ifn € N*, Ay,...,Ap €, M +... 4+, = i, ey lny T1ye oy 2n € X,
t1 ~ Z1y...,8n ~ Zp, then Mty + -« -4 Aty ~ A1) +- - -+ Ap2Zp, Or equivalently,
fn €N Ap,..., 0 €4, M+ 4+ Aa =1, X;,..., X, are equivalence classes,
then M X; 4+ --- + AuX = {Mz1+ -+ MnZn; £ € Xay...,7, € Xa) is
contained in a necessarily unique equivalence class. Conversely, let us be given an
equivalence relation on a nonvoid convex set X that is compatible with its convex
st structure. CallY the quo-_‘.i.ent set and f : X — Y the quotient map. There is
one and only one convex set structure on Y so that f is a convex set map, namely
MYi+---+A,.Y, €Y in the sense of Y is the unique equivalence class containing
MYi+- 4 A Ya = { My + -+ Aaunjyi € Yi(i = 1,...,n)} C X in the sense
of X, formeN" L, edi=1....n), s+---+A=1Y,€Y(i=1,...,n)



CBPF-NF-002/92

5=

PROPOSITION 7. Introduce on a nonvoid convex set X the binary reIat-ion zZy ~
z2(z1,22 € X) meaning that (1 — M)z + Az, = (1 = A)z + Az; for some X € J,
a:"E X. Tt is an equivalence relation that is compatible with the convex set
structure of X. Call Y the quotient set and f : X —+ Y the quotient map.
Consider the unique convex set structure on Y so that f is a convex set map.
Then Y is a convex set satisfying the cancellation rule for convex sets. If
9 : X — Z is any surjective convex set map, Z being a convex set satisfying the
cancellation rule for convex sets, there is a map h: Y '-b Z satisfying hf = g,

where h is a necessarily unique surjective convex set map.

Introduce the one dimensional injection rule (ODIR) for a convex set X : The
map A € 1 - (1~ Az + Az; € X(21,22 € X, 21 # z2) is always injective.

PROPOSITION 8. Fixed a closed triangle M of vertices a,b,c in R?. Let N be
the union of the closed segments [a,d] and [b,c] of R2, where d € [b, ] is fixed.
M is, but N is not, a convex subset of R?, Define the surjectivemap f : M — N
by f(z} = z for z € [b,c], and as the point f(z) # d where [a,d] meets the
parallel to [b,c] through 2 € M, = ¢ [b,c]. There is one and only one convex set
structure on N so that f is a convex set map for the convex set structure on M
induced by R?. Then N satisfies the one dimensional injection rule but it fails
to satisfy the cancellation rule for convex sets. A convex set X fails to satisfy
the cancellation rule for convex sets if and only if either X does not satisfy the
one dimensional injection rule, or else X satisfies the one dimensional injection

rule and it contains some convex subset isomorphic to N.

PROPOSITION 9. Let z; ~ z3(zy,z2 € X) be an equivalence relation on a
nonvoid convex set X. The following conditions are equivalent: (1) There

are a real vector space E containing X as a convex subset and & real vector



CBPF-NF-002/92

-6-

subspace F of E such that the given equivalence relation on X is induced by
tlie equivalence relation that F defines on E. (2) The given equivalence relation
on X is compatible with the convex set structure on X, and both X and its
quotient convex set Y are vectorial. (3) The given equivalence relation on X
is compatible with its convex set structure, and if A € J, z,2,,z, € X , then
(A =2)z + 2z = (1 = A)z + Az, implies z; = z,, and also (1 — A)z + Azy ~
(1 = 2)z + Az, implies Ty ~ 2.

(*) See B. Fuchssteiner & W. Lusky, “Convex Cones”, North-Holland, 1981.



