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Abstract

We provide an expllicitly moduli-dependent realization of the (2,2),
¢ = 3n superconformal algebra, utilizing an interacting collection of b,c,B.¥
systems. Our construction follows from a (2,2) superconformal Lagrangian

describing the critical surface of a N = 2 Landau Ginzburg Lagranglian or of a
¢ model on a deformation class of Calabi-Yau n-folds.
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1 INTRODUCTICN

Superconformal field-theories [1,2a] of type (2.2) [3] have been analyzed
in depth and under many view-points.

Their applications are in two different fields:

1) superstring compactification [4-8];

i1) 2-dimensional critical phenomena [9,10].

The first application relies on the fact that for c = 9,(2,2)-theories
represent the Internal degrees of freedom of the heterotic superstring
vacua with N = 1 target supersymmetry and E6 chiral gauge group.

Geometrically the (2,2)-vacua correspond to a compactification where the
internal 6-space is Calabi-Yau manifold, namely a complex three-fold F3 of
vanishing first Chern class: 01(F3) =0 [11].

The second application of (2,2)-theories 1s in the fleld of critical
phenomena and it is not related to a specific value of the central charge.
- However, there is a conjecture by Gepner [5], supported by overwhelming
evidences [10], that any ¢ = 3n (n € N) (2,2)-theory is the exact quantum
solution of an N = 2 o-model on a complex n-fold F‘n of vanishing first Chern
class: cl(Fn] = 0. ©Such spaces have always SU(n) holonomy and are named
Calabi-Yau n-folds.

This correspondence leads to a geometric interpretation of the abstract
(2,2)-theory deformations in terms of the modull of the underlying Calabi-Yau
manifold. In general one finds an isomorphism between the Dolbeault
cohomeology ring of the Fn n-fold and the chiral ring of the corresponding
abstract (2,2)-theory (12].

Furthermore the Zamolodchikov metric [13] on the moduli-space of the
(2,2)-theory 1is to be indentified with the Weyl-Petersson metric on the
corresponding F; moduli-space. In particular, in the ¢ = 9 case the complete
meduli-space of the (2,2)}-theory 1s the direct product of two special
Kéhlerian manifolds [14]:

Mnodull B SK(:,.‘..)o SK(z,g) “..1)1_
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ﬁz‘
where the complex dimensions of the two submanifolds (dim SK(1 9= h(1 '
dia SK = h )} are the two independent Hodge numbers of the Calabi-Yau

(2,1) {2,1)

3-fold. From the algebraic view-polnt SK is the parameter space of the

(1,1)
Kidhler class deformations, associated with harmonic (1,1)-forms, while SK

is the parameter space of the complex structure deformations associated :rzi.tllf)x
harmonic {2,1)-forms.

From the abstract (2,2} viewpoint SK(&i)
superconformal theory deformations induced by chiral-chiral primary fields

characterized by conformal weights h = h = % and U{1) charges q = q = 1, while

is the parameter space of the

S(1 1 is t he parameter space of the deformations induced by
chiral-antichiral primary fields having h = h = % and q = - q = 1.
11 .
Followlng the notation of [7] let W. 2 ., 2| (z,2) be the chiral-chiral
1,1

primary flelds mentioned above (a = 1,...,h(1 111; then, evaluating the

operator product expansion with N = 2 supercurrent:

1 1

C@E @ [* Hwd = —L— e[l Hwo) +reg (1.2)
a 2 al0 , O
1,1 |z - w|
we obtain a set of l%z 0 fields of conformal welghts h = h = 1 that can be

used to deform the Lagrangian of the (2,2)-theory:

£29(2,2) 5 £%¥(z,2) + 6“"’.[3 3](:.5) = £%%(z,2) (1.3)

The parameters &M are the differentials of the (2,2)-theory of the
(2,1)-moduli and the new Lagranglan 22 defines a new (2,2)-theory with the
same htz,n and hu'n numbers and the same central charge. _

Iterating the procedure we can reconstruct (at least in principle) a

Lagrangian 2{&2)(2,E,M'J which explicitly depends on a set of l&z 1
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parameters M* and, for all values of these parameters, defines a (2,2)-theory
with fixed Hodge numbers and fixed central charge.
Setting:

¢.[; . ;](z,E,m - ﬁ Pl O R ) ‘ (1.4)

the Zamolodchlkov metric g, ;(M.ﬁ] is defined by the 2-point correlator:

- - . g ;(H.ﬁ)
<6;(z.z.u)o {w,w,M) > = -"—‘ (1.5)
* |z - |

(%2)(Z.E,H). by calculating the

Furthermore, from the Lagrangian £
associated Noether currents, one can derive an explicitly modulil-~dependent
expression for the generators of the (2,2) superconformal algebra.

The problem with the programme we have outlined is that usually it cannot
be carried through in explicit terms.

Writing the (2,2) Lagrangian as a ¢-model Lagrangian one needs an
explicit metric and torsion on the Calabi-Yau n-fold. These items cannot be
randomly chosen but have to be determlned as the zeros of the associated
B-functions, so that the theory 1is really superconformal. This involves
calculating and resumming the whole perturbation series of the ¢-model, which
is clearly beyond reach. Alternatively, in the orbifold limitlng case [15],
where the superconformal metric and torsion are known (the flat ones) only

a subset of the primary fields & L 1][2,5] can be written in terms of the

original fields appearing in Otgl underformed lagranglan (untwisted
moduli). The remaining defermations (twisted moduli) are expressed in terms
of the spin fields that are non-local functionals of the original orbifold
variables. This means that the outlined programme can be carried through only
for the untwisted modull [16].

In the present paper we want to show that there is at least one
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deformation class of smooth algebrale Calabi-Yau n-folds for which the
Lagranglian (2
algebraic moduli: furthermore the generators of the (2,2)-algebra can also be
written in an explicitly moduli-dependent way and fulfill the N = 2 OPE’s at

any value of the modull parameters. The deformatlion class with the above

(z,z,M) can be explicitly written in terms of all the

properties is pru[n + 2], namely the set of complex n-folds defined by a

homogeneous polynomial constraint [5] of degree n + 2 in CPn+1.
Our strategy to obtain the result will now be outlined and from this

sketch it will be clear why we focus on the particular case CPn+1[n + 2].

The baslic idea is that of utllizing a new set of varlables, different
from those of the o-model, that capture the topological and analytic
properties of the target-manifold bypassing all its metric properties, thils is
the same aim pursued by the Landau-Ginzburg formulations (9] where the
analytic and topological propertles are encoded in the superpotential, while
the metric properties, encoded in the kinetlic terms, are disregarded. The
difference between the Landau—Glnzburg approach and our feormulation is that
the former ls an ordinary fleld theory, beconring superconformal ony at some
critical point, while the latter 4is a (2,2)-theory never moving
off-criticality. In the Landau-Ginzburg Lagranglan the basic variables are
scalar superflelds representing the cocrdinates of the ambient space in which
the Calabl-Yau n-fold 1is immersed as a complete Intersection of polynomial
(D-2) _ 0 but

2
quantum mechanically they acquire anomalous dimenslons related with the

constraints. Classically these fields have canonical dimension

structure of the superpotential. In our Lagrangian the basic variables are an
appropriate collection of the B-y-b-c systems [2] whose conformal weights
encode the approprlate anomalous dimensions related with the defining
polynomial.

The argument leading to a formulation in terms of B-y-b-c fields is the
following. On one hand we know from Gepner’s work that an interesting class
of ¢ =3n (2,2)-theories can be built as tensor product of N = 2 minimal
models. On the other hand, it is a result shown in the present paper, that

N = 2 minimal model of central charge
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c = (1.6}

can be reallzed in terms of the supersymmetric B-y-b-c systemn [2] where the

conformal weights of the four flelds are as follows:

higl = a = %+ (1.7a)
higl =1 -2 =233 (1.7b)
hibl =2 + 3 = 523 (1.7¢)
hle] = 5 - a =221 (1.7d)

Hence, for the (2,2)-theories obtained from the Gepner’s tensor product
construction, a Lagranglian written in terms of g~y-b-¢ fields does always
exist. The next question is whether h = h = % chiral-chiral primary flelds
can be written solely in terms of B-y-b-¢ fields. If this condition is
verified, then the deformed Lagrangjian 1s still constructed out of the same
set of fields and the deformation procedure can be successfully iterated. In

(2'2}(2,5,1'{] as a power series in the

this way one obtains the Lagrangian £
moduli parameters M (Noether coupling method). Fixing ¢ = 3n, the critical
condition we have Just mentioned is certainly met by the following

tensor product:
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g Ief(m)™? (1.8)
which corresponds to the Fermat curve of degree n + 2 in CPn+1[5]:
+2 +2 n+2
FCn.Z: +z: Y420 =0 (1.9)

The Fermat’s curve FCn is obviocusly a special point in the moduli-space
of the deformation class CPmu[n+2] so that the modull-dependent Lagrangian

{%2)(2.E,H) we obtain with our Noether procedure describes this deformation

L
class.

In order to explain why F; = (n)n+2 has the property we have required and
why 1t 1is specifically chosen, let us recall the results of ref. [5]

concerning the algebraic interpretation of a general tensor product model.

Conslder the tensor product of N dlscrete serles of level kl{i =1,...,N}
and to each of this minimal models assoclate a complex coordinate 21' Def ine
the least integers ri(i =1,...,N) and d such that

d
N =y =+3 {1.10)

The (2,2)-theory obtained from the above tensor product corresponds to the
(N-2)-fold defined by the following degree d equatlion

we 2! +z2% +...+2% =0 (1.11)

in the welghted projective space HCPld(rx,...,rH).

Note that a minimal model with k = 0 contributes zero to the central
charge and corresponds to the ldentity representation of the superconformal
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algebra. Hence k = 0 factors are irrelevant in the superconformal language.
However they cannot be disregarded while writing the corresponding algebraic
equation (1.11). If ¢ = 3n the total number of coordinates 21 has to be n + 2
in order to obtain an n-fold by means of a polynomlal constraint in an
n + 1-weighted projective space. In a tensor product with N < n + 2 the
missing coordinated are associates with k = 0 models and have welight %, d
being defined by equation (1.10). Note alsoc that k = O factors correspond to a
B—-y-b-c system with conformal welght %, %, %, %
(1.7)). Hence, also in the Lagrangian we are proposing k = 0 factors cannot be

(in the glven order) (see eq.

disregarded,

Clearly the welghted Farmat's curve (1.11) is a particular case of the
deformation class HCPn_l{d;rl,...,r“) (Here we follow the notation of ref.
[171).

It is Iimmediate to see the correspondence between the algebraic
deformations of the defining polynomial (1.11) and the chiral-chiral primary
filelds that are expressible in terms of the Bi-ari-bi-cl variables. It suffices
to establish the following correspondence between the coordinates of the

welghted projective space and the Bi-fields:

z =B (2)B (2) (1.12)
Given a polynomial nt? (Zi} of degree k1 +2 in the 2i coordinate
(homogeneous of degree d in HCP"_z(r1 rn), if we perform the formal
substitution (1.12}, we obtain the operator 1%'? @ ,8,) that 1s the

chiral-chiral with h=h =3, q=3=1. This follows from eq. (1.7a) and
the U(l) charge of Bi fields 1is q(Bl) = Euu%—i. In general, however, the
i

complex structure defermatlons of a HCPm4(d;r1,“.,rN} clasg are many more
than the polynomial deformations. Thls means that there are other expression
as polynomials In the orlginal Bl-variables (twisted moduli). The only case
where the polynomlial deformations encompass all the deformations is the case

of a hypersurface in CPh_i. namely the case
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k=k=...=N—'2=n (1013)

leading back to the proper Fermat’'s curve and teo the deformation class

CPwu[n+2]*. This is the reason why we focus on this deformation class. We

present now the explicit derivation of our results,

2 Coupling of a B-y-6-d system to 2D supergravity: (1,0) local supersymmetry
versus (2,0) global supersymmetry

In this section we consider the coupling to 2D-supergravity of a system
composed of two Bose flelds B, ¥ with conformal weights A, 1 - A and of two
Ferml fields b, ¢ with conformal weights A + % . % = A. In this way we obtain
an action endowed with (1,0) local supersymmetry from which we can work out
the stress energy tensor and the "local®" supercurrrent of the B-y-b-c

system. They close the OPEs of an N = 1 superalgebra with central charge:

c=3 - 12A (2.1)

The gauge flxed action, however, is endowed with a larger (2,0) global
supersymmetry whose associated Noether currents fulfill the OPEs of the N = 2
superconformal algebra. The central charge ls cbviocusly the same and 1s given
in eq. (2.1). This is the starting point for identification (1.7). In order
to obtain a unitary representation we must equate the value of ¢ given in
{2.1) with that given in (1.6) and we obtalin egs. (1.7).

To carry through our programme we utilize the rheonomy approach [18] and
we use the notations of ref. [19].

The supergravity background is described by the sweiben 1-forms {e’,e”}
and by the gravitions l-form { that obey the following structural

Note that for n =2 we have the surface K3 and, axceptionally, there is =&
20th non algebraic modulus besidex the 1% algebralic ones.
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-9
equations
T = de’ + ohe’ = 2 0N (2.2a)
T =de - whe =0 (2.2b)
T" ®dg + 5 WA = e'he” (2.2¢)
R = dw = Re'Ae” - 17¢he” (2.2d)

where the w 1s the SO(1,1) spin connection. R is the world-sheet curvature and
T the gravitine fleld strength.

The speclal supperconfermal gauge ls selected by choesing

et = dz + % sda | (2.3a)
e = dz (2.3b)

yielding w =0, R =1 = 0.

The action of the 8 - ¥ - b - ¢ system in the supergravity background
(2.2) has the following form:

The _ Tbe
Fve _ Lz & (2.4)
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=10~

@B [_um + (1 - 2)7d8 - (A + F)bde + (A - Z)cdb|Ae’

+ et \lz’cl\[%(a - %)cdﬂ + % Abdec -~ 1be’] (2.5)

+ % CAC[(A - %)bc + Asr]

From 1ts variation we obtain the rheonomlc parametrizatlions

_ + - 1
db = 8 be" + a be” + - L8 B (2.6a)
de = 8+ce* + 8_ce_ + 28y (2.6b)
dg = 3 8e’ + 8 8e” + 20b (2.6c)

. - |
dy = 6*1e + 8 qe + 5 C8+c (2.6d)
and the equations of motion:
db=8c=8g=8y=20 | (2.7)

Egqs. (2.6) imply that the supersymmetry transformation rules with respect to
which the action (2.5) is "locally" invarlant are:
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-11~

8b = 2 €88 (2.8a)
dc = 2ey {(2.8b)
38 = 2¢d - (2.8c)
s1=5edc (2.84d)
se’ = ie (2.8e)
d¢ =0 (2.8f)

3 = de (2.8g)

The stress-energy tensor T{z) and the "local” supercurrent G(z) generating the
transformations (2.8) are easily obtained by varying the action (2.5).
Following [19] we set

38 = - =— I [T e'Ase’ + T eAse” -
2" ¥ -

e! Ge*Ae'] . (2.9)
and in the special superconformal gauge we obtain:

T = - ABdy + (1 - A)ydB - [a . %]b&c . [% - a]cab (2.10a)
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G = -[A - %]088 - ABBc - 27b (2.10b)

where we have denoted gE = 3. (We shall use 9: = 8). In order to verify the
oz
above currents satisfy the OPE’'s of the N = 1 superconformal algebra:

T(z)T(w) = % 1 i 21‘(«:)2 P2 C) R (2.11a)
(z-w) (z~w) (z-w)
T(2)6() = 5 —t— G » ), o (2.11b)
{z-w) (z~w)
_2 1 2T (w)
G(z)Glw) = 3¢ ( 5 * Tz=ay * Te8 (2.11¢)
Zz-w)

with the value (2.1} of the central charge one has to utilize the
fundamental OPEs:

c(z)b(w) = TEéBT + reg (2.12a)
b(z)e(w) = TEéET + reg (2.12b)
¥(z)B(w) = TE%ET + reg (2.12c)

B(z)y(w) = - TEéBT + reg (1.12d)
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that follows, via canonical quantizatlion with Dirac brackets (we have second
class constraints} from the gauge fixed action (2.4):

B¥bc = Byve, =
S I“z dzdze F7*(z,3) (2.13a)

zf"“" = - AB3y + (1 - ¥)738 - (A + %}bac + (A - %)c5b (2.13b)

(see for instance [19] for a more detalled derivation). Th crucial point is
that the action (2.13) is invariant under a larger (2,0) global supersymmetry.
Naming e and € the two constant supersymmetry parameters, under the

transformations

38 = 2e' b , &b = 5 € a8 (2.14a)
5y = % €'dc , 5c = 2¢7y (2. 14b)
the variation of the Lagrangian is a total divergence:
SEP = &T(BE” + 8£7) + ' (3r' + oY) (2.15)
o =z z z z
where
f = by (2.16a)}

f- =0 (2. 16b]
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-14-
£ = l[mac + [A - 1] BBc] (2.16¢c)
z 2 2 *
fi = - [méc + [a - %]Esc] (2.16d)

Using Noether theorem we can calculate the conserved currents generating
these supersymmetries. Let £(¢1,8¢1,5¢1) be a 2D-lLagrangian for a collection

of fields ¢1 and let us assume that under a variation:
3¢, = t:*TA(M (2.17)
we have
3¢ = eA[Er: + ari] (2.18)

The correspondling currents are given by the formula:

= Th(¢) ot - £ (2.19a)
a|a¢l|

N >

3= T:w) LA (2.19b)
z Py a‘l z
and are conserved
EJ: + 535 =0 (2.20)

If one of the two components of J vanishes, the other is holomorphic
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-15-

(respectively antiholomorphic). Inserting eq.s (2.14) and {2.16) into (2.19)

we obtailn.

G, = 2b (2.21a)
G- =0 , (2.21b)
G; = - [a - %]CBB - AB8c (2.21c)
GE = AB3C + [a - %lﬁpc & 0 (2.21d)

where weakly zero (# 0) means zero upon use of the field equations. Thils is a
very subtle point. Equations of motion have to be utillzed in whlle verifying
current conservation (eq. (2.20)); yet weakly zero quantities cannot be
disregarded in the calculation of OPEs, the same way as weakly zero objects
cannot be disregarded in the calculation of Poisson brackets. The holomorphic

supercurrents

G (z) = G; = 2yb (2.22a)

G'(z) = G; = - [ - %Jcaa - AB8c (2.22b)
together with the U(1) current

J(z) = - (1 - 2A)bc + 2ABy (2.23)

and the stress-energy tensor (2.10a) fulfill the OPEs of the N =2

superalgebra:



T(z)T(w) = S 1

2T(w) , _8T(w)
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+ reg (2.24a)
2 (z-w)* _(z—u]a (z~w)
+ 3 1 t 8Gt[u)
T(z)G (w) = > G (w) + + reg {2.24b)
2
(z-w) (z-w)
T(2)J(w) = J(@) + —1 83(w) + reg (2.24c)
(z-w) (z-w)
_— _ L 1 J(w) T(w) + % aJ(w)
G (2)G (w) = 3¢ 5 * 3 =) + reg (2.24d)
{z-w) (z—w)
Jz)6 W) = ¢ AN re (2.24e)
)G W) = & Ty ¥ res o
J2)i) = 3§ b ¢ reg (2.42f)
(z-w)

with the value (2.1} of the central charge.

a global but also a local holomorphic N = 2 supersymmetry.
can verify that the action {2.13)

transformation

388 = 2¢ b

1

8y = 5 e'oe - [k - %] ac’c

This shows that we have not only

Indeed the reader

is invariant against the more general

{2.25a)

(2.25b}
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=17~
b = % c'ap + roe’g (2.25¢)
8c = 2¢ ¥y (2.25d)

where the parameters are arblitrary heolomorphic functions:

3et =0 (2.26)

These transformations are retrieved from the structure (2.21} of the

supercurrents utilizing the general formula

59(w,a) = § 3% le'2)6%(2.2) + £ (2)6 (z.2) |¢(w, @)
[/ 21! =z F 4
(2.27)

+ 4§, g% [g"'(z)Gi(z.;) + c"(z)G—E(z,E)]Mw.;)

which holds true for any field ¢(w,a]. In this way we have shown that we can
realize the miniral discrete series of the N = 2 algebra in terms of B-y-b-c

fields as a consequence of the enlarged supersymmetry of the action (2.13): as

already stated, it suffices to impose unitary by setting A = EE%Z (k € N).
As a final remark note that the local supercurrent (2.i0b) is Just the

sum of the two global ones (2.22a-b)

G=G" +G (2.28)
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3 The (2.2) Lagrangian of a tensor product model and its moduli-dependent

deformation

Consider now a tensor product model (kl’kz""’ku] corresponding to the
weighted Fermat's curve (1.11)}. A world-sheet Lagrangian for this
{(2,2)-thecry is given (in the superconformal gauge) by:

N
@2, = . 1 [.[3z 5 - ~ o
20 (z,2) iZIEE::E [ [Biawi + 81811] + (Zki + 3)[1IBBl + 118811
(3.1)
- {ki + 3) b dc, + biaci] - (ki + 1)(ciab1 + °1ab1)]
In particular, for the proper Fermat's curve (1.9) we have:
@ _ 1 ¢ - - - ~
£Fn = 503d 12; [ [81671 + 81811] + (2n + 3)[71851 + 11881]

(3.2) .

~{n + 3) biacl + blacl] - (n + 1)[c18b‘ + clabl]]

The Lagrangian (3.2} is Invarlant against the 2n + 4 SUSY transformations
(2.25) of the Bi-wl-bl-—cl variables and the analogous ones by the tllded
fields,

Consider now an arbitrary homogeneous polynomial of degree n + 2 in the
CP

n+l’

™z =c ,..., 2z (3.3)

i
1 n+2

where c, . is a symmetric tensor in (n + 2}-dimenslions. The polynomial
1" ne2
1T can always be rewritten {up to U(n + 2) rotation) as:
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-19=

H(n+2} 2) = F(n-l-z] (Z) + M :4-3(2} ' (3.4)

where F(M (2} = Z;"z + Z;”z +...2"% ig the Fermat's polynomial and where

2) n+2
PTZ(Z] is a basis of monomial for the non-trivial polynomial deformations,

whose number

2n + 3

] - (n + 2)3 (3.5)

is the number of algebraic moduli. In the first few cases we have m(1) = 1,

m(2) = 19, m(3) = 101 and it is fairly easy to write the basis P:*a. For
instance in the well studied case of the quintic hypersurface (n = 3) the

101 Pi are given by [5]:

(z?j 1= 20
222 1#j*k 30
@ =4 1YL ek 20 (3.6)
2,27
12j=2k=1 20
zlzjzkzi
22222 1
SRR

a(n)
2(2’2)(ZQEIM) = £(2’2) [Z:E] + i Ha.b G P P* (3'9)

(ne2) F o 1)1

If we perform the substitutlon (1.12) we obtain that each of the m(n)

1 1
operators \Fu['f i](z,E) = P:*ztﬂill’:*atsi) is a chiral-chiral primary field
1 1

with F™%(Z) with the correct welights and charges. Inserting these v
operators and the explicit for (2.21) of the supercurrents into eq. (1.2) (the
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right-moving supercurrent are identical) we obtain the expression for the

deformations oa[; (1)] (z,2z) of the Lagrangian (2.13)

1.1 - ~ O o : '
%[o : 0] (2.2) = b5 PUEIFE) (3.7

where we have introduced the notation

« _ a" o
P11 1.(B) = 5 ) PT(B) (3.8)

1 n

and similarly for the tilded objects. In eq. (3.7) repeated indices are

summed on, as usual. We conclude that for a pelynomial rrmz infinitesimally

(2,2) =

close to sz(uu << 1) the corresponding Ztmz)(z,z,M) lagrangian is given
by:

(2,2), = 2,2),_ = »dn) ~ o

25%z,z,M) = 223 2) + )f M*b b P*P (3.9)

(n+2) F 1§t 3§

n €=l
2,2)

where ZtFnl is defined by eq. (2.20),.

We shall now prove that (3.9) describes the superconformal {2.2)-theories
associated with the polynomial l'lm2 rewritten in the form (3.4).

In order to prove this result we have utilized the time honoured Noether
coupling method, taking the modult M* as expansion parameter. Indeed the
reader can verlfy that the Lagrangian (3.9) 1s invariant (up to a total
divergences) against the following holomorphic supersymmetry transformations

(581 = 0):

531 = 2e‘l:i (3.10a)



Gbl

3y

3c
i

2]
1 + 1 *
3 €0B, + 5n+g OF B
1 = n+l +
3 € Bcl + >nid de Bi
2e y
0
0
mi{n)
LY e
=1
min)
% e t MPF" b
113

o=1
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(3.10b)

{(3.10c)

(3.10d)

{3.10e)

(3.10f)

{3.10g)

(3.10h)

The action (3.9) is also invariant under the anti-holomorphic transformations
(8::t = Q) one obtain from eq.s (3.10) exchanging tilded with untilded fields

(¢ & ¢) and holomorphic with

antiholomorphic derivatives

(8 & 8). In

particular when the parameters ci are constant the total divergence into which

varies the Interacting Lagranglan (3.9) is the sum of n + 2 coples of the

total divergence (2.19) intoe which varies the free action.

have:

Explicitly we



—22—

3222 (2 2. M) = e"[éf* + af!] + c'[af' + bfi]
(n+2} z z] x z

+ _ 1 n+l

1 1~ 2n+4 aBlcl]
£ o=- B, dc,

; 2n+4 2n+4 B

£, = b7,

f-=0
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(3.11)

(3.12a)

(3.12b)

(3.21¢)

(3.12d)

Inserting the result and eqs. (3.10) into the general foraulae (2.19} we

obtain the Noether supercurrents:

2]
1
N
-
o

1 1 m{n)

- n+ - 1
2n+4 ﬂiaci 2n+d 8 & "3z
=1

MP“P“b = 0

G =
z

The component Gi is weakly zero as a consequence of the field

(3.13a)

(3.13b)

(3.13¢)

(3.13d)

equations:
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E.si = Eb‘ =0 (3.14a)
aﬁl = :;aSi =0 (3.14b)
_ m{n) o ot _
dc = Z wr% P : (3.14c)
1 113
=1
_ min) Mab & o~ e
By, = Z P By (3.14d)
=1
- min) ~ o
dec = ): M*8% P _ (3. 14e)
i b | O I |
a=1
. m(n) ﬁ . o _
o, = a; FipE (3.14f)

In the proof of thls fact one has to remember that P* is a homogeneous

polynomial so that

g'p* =(n-m+ 2)P
131“.5 J -1
m 1 ]

(3.15)

By the same token we can also verify that G: is holomorphic (EG; = 0)}. As we
see, the {Bi,bl}-flelds remain holomorphic (respectively antiholomerphic) also
in presence of interaction. On the other hand the {ri.cl}-fields have no
longer a definlte holomerphlc character. HNotwithstanding this fact, canonical
quantization leads to the same fundamental OPEs as In the free case (2.12),
that is we find
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F.]
Bi(z)fj(w,a) = - ;i% + reg (3.16)

and similarly for the other cases. Relylng on these OPEs, we can retrieve the

transformations (3.10) by inserting the Noether currents (3.13) Into the
general formula (2.27). The holomorphic supercurrents
+ n+l _ ot
G (z) m Ciasi 21'1"’4 B 80 = Gz (3.17a)
G (2} = Zz'ibl = Gz (3.17b)

close the OPEs of the N =

2 superconformal algebra (eqs.
the U(1) current

(2.24)) together with

J(z)=--1b

o] n12 B 7, (3.18)

and with the holomorphic part of the stress-energy tenscr:

T(z) = T 2n+3 n+3 n+l
zz

9% ¥ e V9B, T 3meg 049%, ~ 3nes o9, (3.19)

the central charge is c¢ = 3n, as expected. The mixed component of this latter

1 - 2n+3 =
T on+d B9, * 2544 7,98,
(3.20)
n+3 n+l = = ) o
- 535 bBc, - 72z ¢ Bb + M b PP* = 0
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is weakly zero upon use of the field equations (3.14}.-

4 Conclusions

We have exhibited a (2.2)-theory that generalizes the Gepner tensor
product construction to an arblitrary point in the moduli space of complex
structure deformations. -

Hopefully our moduli-dependent realisatlon of the (2,2) superconformal
algebra will provide new tokens for the evaluatlion of th Zamolodchikov metric.
In this respect it should be noted that the moduli are hidden in the mode
expansion of the Bi~1{4n—cl flelds. Indeed from the field equations (3.14)
we learn that Bl-bi, {Bi-bl) are holomorphlic (respectively antiholomorphic)
and admit the same mode expansion as In the free case. 0On the other hand,

the general solutlon of the field equations for C. ¥, is given by

da min)

° - - it B o

7,(2) = §,(2) - §; > Wz - 0 u; H“bj(w)l"u(w)bltz)?l{z] (4.1a)
. da _ _ m(n} M“ﬁ“ _ et

c,(z) = & (2) - §; 5t Bz - W) a; L@ (2)F(2) {(4.1b)

vhere ;1(2) and Ei(z) admit the same mode expansion as the corresponding free
flelds. The modes {;?,E?} are those having the standard commutation

relations with the modes {BT,bT}. Using eqs. (4.1) in eqs. (3.17) we obtain
an explicitly modull dependent representation of the (2,2) algebra involving
. c'; and their tilded analogous.

only the free oscillators BT, 1?, bT

Acknowledgements We are grateful to A.R. Levi for useful discussion at

the beginning of the work.



CBPF-NF-002/91

-26-

References

[1]

A.A. Belavin, A.M. Polyvakov and A.B. Zamolodchikov, Nucl. Phys. B 241
(1984) 333.

[2a] D. Friedan, E. Martinec and S, Shenker, Nucl. Phys. B 271 (1986) 98.
[2b]) L. Bonora, M. Matone, F. Toppan and K. Wu, Phys. Lett. B 224 (1989) 115;

(3]

{4]

[S]

[6]

(71

£}
9]

Nuecl. Phys. B 334 (1990) 717. P, Dl Vecchia, F. Pezzella, M. Frau, K.
Hornfeck, A. Lerda and S. Scluto, Nucl. Phys. B 333 (1990) 635.

M. Ademcllo, L. Brink, A. D’'Adda, R.D'Aurié, E. Napolitano, S. Scluto,
E. Del Giudice, P. Di Vecchia, S. Ferrara, F. Gliozzi, R. Musto, and R.
Pettorino, Phys. Lett. B 62 (1976) 105.

W. Boucher, D. Friedan and A. Kent, Phys. Lett. B 172 (1986} 316. A,
Sen. Nucl. Phys. B. 278 (1986) 289; Nucl. Phys. 284 (1987} 423. L.
Dixon, D. Friedan and E. Martinec, Nucl. Phys. B 299 {1988) 613. T. Banks
and L. Dixon, Nucl, Phys. B 307 (1988) 93.

D. Gepner, Nucl. Phys. B 296 (1988} 757; Phys. Let. B 199 (1987} 380;
Trieste lectures at Superstring school 1989.

A. Litken and G. Ross, Phys. Lett. B 213 (1987) 152. M. Lynker and R.
Schimmrigk, Phys. Lett. B 208 (1988) 216; Ibid B215 (1988) 681; Ibid
B 249 (1990) 237; Nucl. Phys. B 339 (1990) 121. P. Candelas, M. Lynker
and R. Schimmrigk, Unlversity of Texas Preprint UTTG-37-89. P. Zoglin,
Phys. Lett. B 218 (1989) 444. B Greene and M. Plesser, Harward preprint
HUTP89/A043. A, Schellekens and S. Yankjelowicz, Nucl. Phys. B 330 (1190)
103. J.K. Kim, C.J. Park, and Y. Yoon, University of Seuol prep. (1990).
L. Castellanl, P. Fre’, F. Gliozzi, M.R. Monteiro, Phys. Lett. B 249
(1990) 229; University of Torino preprint 17/90, to be published on Int.
Journ. of Mod. Phys.

L. Dixon, V.S. Kaplunovski and J. Louis, Nucl. Phys. B 239 (1990) 27.
A.B. Zamolodchikov and V.A. Fateev, Sov., Phys. JETP (1984) 215. D.
Kastor, E. Martinec and S. Shenker, Nucl. Phys. B 316 (1989) 590 E.J.
Martinec, Phys. Lett. B 217 (1989) 431. C. Vafa and N.P. Warner, Phys.
Lett. B 218 (1989) 51 J.I. Lattore and C.A. Liltken, Phys. lLett. B 222
(1989) 55. S. Cecottl, L. Girardelle and A. Pasquinucci, Nucl. Phys.
B 328 (1989) 701; preprint SISSA 136/89/EP.S. Cecottl, preprint SISSA



[10]
[11]

(121

[13]
{14]

[15)

[16]

[17]
[18]

[19]

CBPF-NF-002/91

68/90/EP,

B.R. Greene, C. Vafa and N.P. Warner, Nucl. Phys. B 324 (1989) 371,

P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Nucl. Phys.
B 258 (1985) 46.

W. Lerche, C. Vafa and N.P. Warner, Nucl. Phys. B 324 (1989} 427.

A.B. Zamolodchikov, Sov. Phys. JETP (1986) 731.

L. Casteillani, R. D'Auria and S. Ferrara, Class. and Quant. Grav. 7
(1990) 1767. V. Periwal and A. Strominger, Phys. Lett. B 235 (1990} 261.
S. Ferrara and A. Strominger CERN-TH 5291/89 - UCLA/89 TEP6, Proceedlngs
of the Texas A.M. String Workshop (198%), World Sclentific (1990), B. de
Wit, P.G. Lowers, R. Phillippe, 5.Q. Su and A. Van Proeyen, FPhys. Lett.
B134 (1984) 37. B. de Witt and A. Van Proeyen, Nucl. Phys. B 245 (1984);
B. de Wit, P.G. Lowers and A. Van Proeyven. Phys. Nucl. B 255 (1985) 569;
J.P. Derendinger, S. Ferrara, A. Masiero and A. Van Proeyen, Nucl. Fhys.
B140 {1984) 307.

L. Dixon, V. Kaplunovski and C. Vafa, Nucl. Phys. B 294 (1987) 43, L.
Dixon, J. Harvey, C. Vafa and E. Witten, Nucl. Phys. 281 (1985) 678 and B
274 (1986) 285. L.E. Ibanez, H.P. Nilles and F. Quevedo Phys. Lett.
B 187 (1987) 25; B 192 (1987) 332. A. Font, L. Ibonez, H.P. Nilles and F.
Quevedo, (CERN~TH 4969/88 (1988)).

S. Ferrara, C. Kounnas, L. Girardellc and M. Porrati, Phys. Lett. B 192
(1987) 368.

Last reference of ref. [6].

see e.g. L. Castellani, R. D'Auria and P. Fre', in Proceedings of the
XIXth Winter School and Weorkshop at Karpacz (Poland) “Supergravity and
Supersymmetry 1983" M. Milewskl editor, page 1; "Supergravity Theory: a
Geometric Perspective", World Scientific Publishing Company {(1990).

P. Fre’ and F. Gliozzl, Phys. Lett. B 208 (1988) 203; Nucl. Phys. B 286
(1989) 411,



