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ABSTRACT

In the series of processes leading to the origin of life,
the growth of information-containing self-replicating polymers
from a mixture of oligomers probably was one of the very last equilibrium
steps, before the onset of non—eqﬁilibrium phenomena ' which
characterize 1living systems. We describe that crucial step as
a critical phenomenon, treated within the renormalization group
framework. We show that the diversity-stability duality of
Darwinian evolution is achieved at this stage if we start from
four different monomers capable of forming two complementary

pairs.

Key-words: Biogenesis; Complementarity; Critical phenomenan; Re

normalization group.
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I INTRODUCTION

One of the earliest crucial stages in the originof 1living
systems is the growth of self-replicating information-contain
ing polymers, starting from essentially uniquely characterized
simple molecules (see, for example, Ref. [l]). Recentlyt?j,
we have discussed this question thought’ as a critical phe-
nomenon and, as such, treated within the renormalization group
(RG) frameworkI:3'4]. We started with a system containing ftwo
complementary monomers (residues), A and -B,complementarity
being understood in the sense of the Crick and Watson . base-
pairs. We:then showed that the effective fugacity (denoted by
K, and corresponding to the complementary interaction) as-
sociated with the growing system, admits a caitical value (de
noted K* and corresponding to an unstabfe fixed point of the RG
recursive relation), above which growth (i.e.,polymerization)
goes on indefinitely; it is clear that indefinite growth is
just a first approximation of the problem (in fact complex chem
ical mechanisms, beyond the compass of the present theory but
unimportant within the present context, will stop the growth
when a certain large size is achieved). In principle, this
growth mechanism (which will be recalled in detail later on,
but which essentially consists in condensation reactions cat-
alysed by fragments complementary to the original ones) pro-
vides, with equal chance, any segquence of monomers A and B
(e.g., ABABAB..., AABBAABB..., ABBABB..., etqg). In other terms,
the preliminary versioni:zj of our model suffers from the res

triction that, instead of producing potentially meaningful
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(from a biological standpoint) sequences, we would end-up with
a chaotic mass of unrelated strings. This limitation is com
mon to other models of polymeric growth, such as the earlier
one of Anderson and Stein[:sj, in which d{iversity is not i re-
stricted by AtabilityEGJ. On.the other hand, models based on
the minimization of the chemical potentiall:7], leading to a
single stable sequence of oligomers are unsatisfactory, since
diversity is a necessary ingredient in Ewvolution.

Anderanltsj has proposed a model; based on a spin-glass-
like Hamiltonian, which recovers both diversity and stability.
We have now found that our modellzz:| can be modified to in-
corporate the diversity-stability duality, provided we start
with {ousr monomers (denoted A,T,C-and G) capable of forming
Zwo (instead of one) complementary pairs (namely A-T and C -G).
In spite of our notation the four residues A,T,C and G, could
be distinct from the well known nucleotides: they could be
their precursors, for example. In Section II we introduce the model
and the RG formalism; in Section III we present the RG results;
in Section IV we analyze the effects of intrachain interactions;

finally, we discuss the main conclusions in Section V.

IT MODEL AND FORMALISM

The monomers A,T,C-and G can form strings by Jintrachadin
bonding (through condensation reactions leading to covalent
bonds), but they also can form {nfterchain bonds (through hydrogen

bridges, for example). One such polymer could be
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' (1)
C

Let X (K, .. >0) be the fugacity (or bonding constant) of the

AT "TAT
A---T pair, and KCG the fugacity of the C---G pair. Both KKT

and KCG depend, in a complex unknown way, on a great number of
thermodynamical equilibrium external parameters such as temper
ature, pressure, water concentration, various salts concentra
tions, etc.

We assume that the chain fragments will grow by the mecha

nism adopted before[:zj, and which can be illustrated as fol-

lows:

(A=-T-G=C)
(A-G-T-2) + (C-G) -

(A- G—T—A)(C-G) ——4(A-G- -A-C-G)

T
1 1

l L} l I ]
1] |} 1 [} )
A=

A
(A-T - G~C) (A-T-

G
-C)

«— " (A-G=-T-A~C-G) + (A-T~G-C) (2)

Notice that we have obtained the top sequence of (l). In the
present illustration, (A-G-T-A) and (C-G) play the role of
grhowing fragments, and (A-T-G-C) plays the role of a catalysing
gragment.

We shall now construct the RG recursive relations through
the configurational analysis of the aggregation of small parts
of the large chain we want to produce. T Ref. [ 2] we per-

formed the analysis of the configurations of the catalysing



CBPF-NF-002/85

fragments associated with the growth of a dimer and of a trimer
(growing fragments). The consideration of larger'élbymers will
in principle improve the result (the exact result being hope-
fully attained when infinitely large growing -~ fragments are
considered). In the present paper, in order to illustrate the
influence, on the critical phenomenon we are interested in, of
the sequence of monomers in the final polymer, we shall con-
sider growing fragments whose size gdoes up tonine monemers (nona
mexns)., An additional benefit will be the numerical improveament
on quantities such as ctitical points and critical exponents.

To make the RG procedure clear, let us first focuse a gsimple
situation, namely the growth of the RATKATKKTKAT"’ type se=
quence. This corresponds to an infinite number of polymeric
sequences (e.g., AAAA..., AAAT..., AATT..., ATAT ..., etcy;
all these polymers will grow Asimuftanecusfy within the present
approximation (this unrealistic degeneracy will disappear with
the better approximation discussed in Section 1V). Let us ér—
bitrarily choose the AAAA... sequence as a prototype, and first
consider the AAA trimer as a growing fragment.

The configurational analysis of the catalysing fragments
is indicated in Table I. To construct this Table, the following
rules have been adopted: (i) we consider all the growth=-active
configurations of all the catalysing fragments whose size is
not longer than twice the growing fragment under consideration
(we want to retain only the most probable mechanisms, and the
probability of occurrence of catalysing fragments much Zongen
than the growing fragment is rather poor); (ii) the "weight"

equals 1 when the catalysing fragment is unambiguously associated
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with the growing fragment under consideration, ?quals 1/2
when it can equally well be associated with the other
growing fragment, and equals O (and is therefore absent from
the Table) when it is unambiguously associated with the other
fragment (to be more precise, when the number of non-connec
ted residues at any given end of the catalysing fragment ex
ceeds the number of its residues actually connected to the
growing fragment under consideration); (iii) the number of
growth-active ends (1 or 2) of the catalysing fragment can be
disregarded (procedure I) or taken into account (procedure II)_
by introducing a "growth efficiency" which equals the number
of growth-active ends; (iv) the interchain bonds are assumed
independent (hence the effective fugacity of a given set of
simultaneous bonds is just the product of the corresponding
fugacities); (v) multiple catalysing processes {(involving
more than one catalysing fragment) or similar complex pro-
cesses are neglected because of a presumably low probability
of occurrence.

These set of rules obviously involve a certain degree of
arbitrariness; however it is believed that any other "rea-=
sonable" set of rules would lead to results not essentially
different from those we shall obtain.

Tablé I yields, through the sum of (weight) x (growing ef

ficiency) x (fugacity), the following effective fugacity:

I _ 2 3

Ry (KAT) =K, + 3KAT + 8KAT (procedure 1I) (3)
I1 - 2 - 3

R3 (RKT) KAT + BKAT + llKAT (procedure II) (4)
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The subscript 3 stands for trimer. Eq. (3) coincides with

Eq. (3) of Ref. [2].
We can treat the pentamer as a growing fragment (of the same

sequence KATKATKATKAT" .) in the same way we have treated the

trimer: the corresponding configurational analysis is indi-
cated in Table II (where, for the present needs, aff single

fugacities are to be taken equal to KAT)' The corresponding

effective fugacities are given by:

I _ 2 3 b 5
RS(KKT)-_KAT'+3KAT'FSKKT-+7KKT.+19KKT (procedure 1) (5)

II(

Rg

= 2 3 4 5
KAT)'—KAT'+3KAT'+SRKT-+7KkT.+29KAT (procedure II) (6)

The RG recursive relation renormalizing pentamer into

trimer is given by:

I,., \ _ oI
R3(KAT) = Rs(KAT) (procedure 1I) (7)
II ' _ LI

Ry (RAT) = Rg (KAT) (procedure 1II) (8)

Both recurrences admit the trivial (stable) fixed points
RKT = 0 (corresponding to lack of growth) and KAT = « (corres
ponding to infinite growth}. They also adnit a critical
(unstable) fixed point,.namely K* =(/277-7)/38 n» 0.254 for pro
cedure I, and K* = (V/696~7)/58 ~ 0.334 for procedure II..

The present calculation provides a further information:

while approaching the critical value K*, the mean Length £

of the growing fragment diverges as&x(K*-KAT)-v, where the
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critical exponent v is given (within the present RG approxima

tion)by
v = In(b/b') _ £n(b/b") (%)
OBl T R /TRy ]
dk, s ' LK, ) /dK, o

b(b') is the size of the original (renormalized) oligomer under
analysis (in our present calculation, b = 5 for the pentamer

and b' = 3 for the trimer), and Rb(KAT) (R T)) the corres-

b %y
ponding effective fugacity. For (b,b')=(5,3 we obtaim v ~ 7,9 for
procedure I, and v % 4.3 for procedure II. The smaller and more
satisfactory (because more consistent with related calculaticns
for stamdard growth models) value of v obtained through procedure:

II, is to be attributed to the realism of the theoretical im-

provement introduced by the growth efficiency. To discuss the

KATKATKATKKT"’ sequence, we have illustrated the calculation
by using (b,b') = (5,3), but no problem exists in principle in

using b' = 2,3,4,....and b' = b+1, b+2,... (see Ref. | 2]
for (b,b') = (3,2) within procedure I). To conclude the one
RG-parameter (KKT in our case) case, it is worthwhile: to menticdn
the olwious fact that whatever has been said for the KATKATI%TKA .
type of sequence, holds as it stands for the FfGKtGKCGKbG"'
one.

Let us now treat the two RG—parameter case, namely, the
(KATbeG? problem. Our purpose is to construct a RG recur-
rence in the (KAT'KCG) space, in order to show the influence

of the sequence on criticality. We consider the sequences

KATKCGKKTKCG""(Wthh corresponds to the prototype "ACAC...,
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as well as té ACTCI..' ACGC. .‘.’ ACTGOOO r etc‘) and &T&T%G%g..
(which corresponds to the prototype AACC .5, as well as" to AICC...,
ATGG..., AACG..., et@}). They can be treated adl to-
gether through the sequence KATKXX'J%’Y'FEGKAT!%(X'KYY' 1% Y
by considering-later on either (Kxx”K.YY') = {Roer Ky ) OF (B Kppn ) =
(KAT,KCG). The simplest meaningfull RG choice  consists in
congidering the nonamer K, KHF‘M'KCGKATISG("KYY' KogFar @ original
oligomer, and the pentamer KAT Kxxf‘ KYY' KCG KAT at the renormalized
one. Were we to calculate even qligomers {e.g., the -tetraner
RATKxfoyy'KCG)' we should have problems later on, namely one in-
dependent recursive (scalar) relation, instead of the itwo we
need, the RG space being two-dimensional; this problem is due
to the fact that the oligomer KAT KCGKAT;RC'G {and the same holds
» » :—)-
for KATKATKEGKCG) is «nvariant under KAT pd KtG, and. therefore
preserves the effective fugacity.

We shall perform the calculatioms only wibhin - our best
proposal, namely procedure II. The configurational analysis as-
sociated with the protdtype pentamer AXYCA (corresponding to
KATKXX'KYY’REGKAT) is indicated in Table IL We obtain the fol

lowing effective fugacity

1
Ry~ (K, /K

3
xxypyrt Kog) = Epp + 3 KpqK

' AT XX

+
[ % [

5
KatRee * 2 Xar¥ex Kyye

Kar®yy Keg * TRar¥xx  Kyy ' Keg

sojun

2
+ 29KATKXX.KYY.KCG {10)
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-
hence
RIL(k X ,K.,K.)=K_ +3K +5K_K
5 AT’ ce?! AT’ T CG AT ATKCG AT CG
2 2 3 2 -
+7KATKCG +29KATKCG (11)
and

1T 3 .2 3
Ry (K s Kyp s Koo Ko ) =Ky + 5 Kpp + 5 K0 Keg

5 2 .5 2 2 2 3
+ 3 KyRee * 3 KarKee * RarKog + 29K, Keg 12)

The Table associated with the prototype nonamer AXYCAXYCA {cor

responding to KATKXX'KY¥'KCGKATKxx'Kyy'KCGKAT) is too lengthy

to be reproduced here. It yields

11 _x 43 3
Xy (KAT'ISXX"K'YY‘fKEG) =K t3 KATKXX' *3 Kr¥ee

> 5 + 7K K

3 KR Royr 77 Kin Koy Ko AT ¥xx ! Byyr Keg

2 1l 2
+IK R R Ko 55 KKK K

+—1§}- K K _,K__,K? +-1§:’l1<21‘<2 K2

AT xX' T YY' €6 K

AT xx' YY" CC

13 2 2 y2 2 g2 g2 2
3 KRy XypKeg + 19K Ky Kypi K

3 2 2 2
+89 KATK'XX' K‘YY'KCG {13)

hence
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-10-

It
Rg (KAT'KCG'K T’ K

., CG): XK _ +3K _K +5KiTKEG

AT AT CG

+ 72 _K? +9k? K2 + 11¥ K + 13k* ¢

at¥ce T2 Fir¥ee aT ¥ce AT NcG
PR 5 b
+ lSKATKCG + 89KATKCG (13)
ani
11 _ 3.2 3 1 D2
Ry (K v Kyqr Kogr Fogd = Kyp 3K +5K Koo + 5K 1 Kop
5 2 25 2 3 o2 11, 2
5x
+ 3K 1Kee * TKep Ko + 9K Koo + TR Koo
U g0 130 g0, 130 40
+ TR Keg T Thr¥ee * T KarKee
ok "
+ 15K, K. + 83K K., - (15)

The problem can now be considered as formally solved, as
the RG recurrence (in the (KKT’REG) space) we were locking

for, is given by
IT ot © v w0 vy ol
ROUK pr Koge Kypr Kog) =RgT IR g0 Koo r Ky s Ko o) (16}

il
and (using the R symmetry)

I1 ' ' ' 1y =p Ll
Ry (‘KCG'KAT'KCG'KAT) Ry (KCG'KAT'KCG'KAT) (17)

for the KATKCGKATKCG"' sequence, and is given by

I1 o o ' ity =pll ¢
Rs (KAT'KAT'KCG'KCG) Rg (KAT' AT’ch'mcc) (18}
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; -
and (using the RiT < Rﬁc symmetry)

Ry " (Koor Kogr Kypr Kypd =Ry (Koo r Koo r Kiqr Ky 7)) (19)

for the KATKAIKCéKCG"‘ sequence. The results are presented

and discussed in the next Section.

IIT RESULTS

Bys. (16) and (17) completely determine the RG flow for
the KATKEGKATKCG"‘ sequence; the results are indicated in

Fig. 1. Note that the KAT = KCG axis constitutes a flew#+in-
variant subspace, which recovers, in the present formalism,
the situation depicted in Ref. [ 27, namely that where .only
one pair of complementary monomers exists. The trivial (ful-
ly stable; noted B in Fig. 1) fixed points "KAT' KCG) =(0,0)
and (»,~) respectively correspond to the {{inite growth (FG)
and {nfinite growth (IG) regions. The critical (semi-stable,

denoted @ in Fig. 1) fixed point (KAT' } = (K*&*) determines

RﬁG
the main universality class of the problem; in other words,

the cxritical exponent v occuring in the FG~IG critical line
(separatrix of the RG flow in Fig. 1) 1s that of the ¢one pair
(of complementary monomers) problem, i.e. that given by FBEq.

(9). For the present (b,b') = (9,5) approximation we have
obtained K* & 0.544 and v+ 3.6.

The critical line associated with the KATRATKEGREG".type

sequence is determined by HKis. (18) and (19), and the results
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are absolutely similar to those obtained for the 'IS\TI%GI'%TRCG”‘
type sequence (in particular K and v are precisely the same). An
overa.ll view is presented in Fig. 2, Above a given critical
line, the corresponding sequence macroscopically(up to hundreds
of monomers, in practice) grows. All the symmetric lines(with
respect to the KAT = KCG axis), such as that of the KATI’EGKATKCG"
and KATKATKCGIS:G”' sequences, -satisfy the nucleotide ratid
(A +T)/{C+G) = 1, I fact, this ratio can alse be satisfied
by other sequences (e.g.; the sequence whose period is
KATKAI KAT KCGKCGKATKCG KCG) whose crtical lines are not sym-—

metrical. The pure sequences KATKATKATKAT"' and KCGIS:GKCGI%G'"
either vanish or diverge the above mentionned ratio, and

the sequence K, oKy p Kogo oo yields (A +T)/(C+G) = 2.

KATKAT KCG
The ratios actually existing (af-lsast in the biosphere) roughly
belongl:sj to the interxal [1/2,2]. Consequently, the present
model, in spite of the non trivial fact that {if succeeds in
differentiating classes of dequences, is not « free from a”
serious limitatioﬁ. This is that any reasonable time : ewolu-
tion in the (KAT'KCG) space (see Fig, 2), i.e. a time evolu-
tion which starts {(on Earth, several billions of years ago)
in the neighbourhood of ("KAT'KCG) = (0,0) and axrives (on BEarth,
nowadays) in the IG region, wilf undufy privifege the (non ex
isting in living organisms) sequences close to the purne ones,
A second important limitation of our model in its pre-
sent stage is the already mentioned degeneracy which makes the
growth of sequences such as AARA...,AAAT...,AATT...,ATAT...,

etc (i.e., families of monomer sequences which share the same

sequence of KAT's and KCG'S) indistinguishable. We argue, in
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next Section, that both defects are simultanecusly overcome
if we take into account the effects of the intrachain (cow

alent) bonds.

IV INTRACHAIN INTERACTIONS

All our effective fugacities (such as Rys. (3) - {6), (10)
and (13)), on which the RG recursive relations are constructed,
were formulated smpposing that any appropriately binded
complementary fragment would {nevitabfy increase the size
of the growing firagment. This is clearly an -oversimpiifica-

tion, since the chain growth alsc depends on the different in

trachain binding constants (these will be denoted . JgarTgr v
JAC'JAG’JTT'JTC'JTG’JCC’JCG and ch; they are 10 in number,

within a nearest-neighbour picture). Tn fact, our approachthus
far corresponds to &Esignto these 10 constants the value in-
finity. & is intuitive that {indite values for these con~
stants will make it monre difficuft to attain the point of
indefinite gvowth of the polymers. We have indicated in Figqg.,
3 the expected c¥itical line assuming say that all the J's
are equal among them (and equal to J), and that K r =K

A CcG
note that K approaches K* when J diverges. The fact that the

= K;

actual J's are {inite and different {rom one anothen, will
make all the critical lines (of Fig. 2)  teo shift towards
higher values of K 1 and K... This shift is different fonr
diﬁﬁening_aaquenceé of monomens, even Lf they preserve  the

same sequence of KAT's and K..'s. The result is indicated in
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Fig. 4, with the (desired) disappearence of the privileged point existing
in Fig. 2 (denoted ®). The particular situation depicted in

Fig. 4 is eonsistent with the choice

Ie

CcC CG

AC

We have not carried -¢on actual RG calculations corresponding
to finite J's, but they are in principle tractable (although
somzwhat burdensome, because of the increasingly large number
of RG parameters). It is clear, in any case, that this is a
realistic path for omercoming the two difficulties mentioned

in the previous Section.

V CONCLUSIONS

One of the important steps of the prebiotic stage of the
origin of life is the transition from a random assembly of
oligomers to an information-containing self-replicating poly-
mer. We have recently described this phenomenon as a critical
one‘zzjg in the present paper we introduce a more realistic
model, involving two pairs of complementary monomerx s, and
making allowance for the monomer interactions along the chain.

Our polymer is essentially single=stranded; it is self-
replicating since a given sequence along the chain say, ...ATCT...

can act as a catalysing fragment, provided growing fragments,
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or oligomers for that matter, are available in the swrroundings.

The model has not a built-in feature to assure equal {or at
least finite) size for the polymer molecules. For most proteins,
of course, size homogeniety is essential, but the strict re=~
quiremént was probably relaxed at an early equilibrium stage,
such as the one we describe. Anvhow, on ' critieal phenomena
grounds, the present theory yiélds, for the picture with fwo
pairs of complementary moncmers, the same universality c¢lass
obtained within the picture with only one of such pairs.

The diversity-stabifity duality, typical of Darwinian evo
lution, is inecdrporated in the model in a natural way. This
vital aspect is introduced by the finite,differing values of the in
trachain binding constants J's. Figure 4 shows that, as bthe
system evolves in time, one sequence is bourld to reach the
critical paint before the others, and will therefore grow and
dominate its environment, Which is the favoured sequence de-
pends on the values of the K's and J's, which are, in their
turn, functions of temperature, pressure, dielectric constant,
ionic strength and other physico-chemical properties of the
surroundings. If these conditions, as well as the -concentra-
tions of particular oligomers, change, some ' other seguence
might become the dominant one. Anyhow it is important to stress
that the present proposal is consistent with reasonable nu-
cleotide ratios (A-+T)/(C-+G);With respect to the type of se-
quence, no "™ priori" pestriction exists, and it is only because
of computational simplicity that we have mainly focused pe-
ricdic sequences.

Our model, giving the overhelming importance of complementary
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interactions, clearly favours a RNA (or DNA) precurser over
a protein one. It.is possible, however, that some sesidual
complementarity existed between pairs of early amino-acids (for
a recent. discussion on amino-acid pairing, see ref. [9]» ™
fact, pairwise conplementatrity is not infalible and consequently it is a
source of errors i the sequence of .@ligomers during growth and replication.
In the last years, other theoretical schemes = have been
proposed to describe the prebiotic evolution of self-replicating
macromolecules. Besides the extensive phenomenoldgical model
of :Figen and Schuster [[7], Anderson [[6], Dysom [10] and Demetrius [11]
have tackled this problem within Statistical Mechanics frameworks. Itwould
be most interesting to make a camarative analysis of these wmo-
dels, but we leave this for a fcﬂjnoming.dpportunity.
Let us conclude by saying that, through the present pro
posal , a picture emerges of what might have been the Last
important thermodynamical equilibrium prebiotic step, before

the beginning of essentially neh-equilibrium phenomena.
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LCAPTION FOR TABLES AND FIGURES

Table 1 - Configurational analysis of the catalysing fragments

Table 2 -
Fig. 1
Fig. 2

corresponding to the growth of a trdimer  (sequence
type: K K Ko...)

Configurational analysis of the catalysing fragments
corresponding to the growth of a pentamer (sequence
type: KypKexe Ky KeoXar %xxt ¥y Xoge o o)

Critical line (full line) in the (RAT'FfG) fugacity
space, separating the finite growth (FG) phase from
the infinite growth (IG) one.of the sequence type
RATKCGKATKCG"' . Arrows and dashed lines indic¢ate
RG flow; the central dot indicates the "Tisotropic"
critical fixed point (responsible for the universa-
lity class of the whole critical line).

Critical lines (in the (BiT, CG) fugacity space)
corresponding to the growth of selected sequence
types (the dashed line is indicative); P&-(IG) denotes
the finite (infinite) growth phase. The point at
KRT = Ky = K* reproduces the fixed point of Fig. 1;
the dotted line is a symmetry axis of some of the se-
guence types (e.g., K r Keo¥ar ¥oge - - and: EKATKA:[']S:GFGC‘ oo) o
The arrows indicated a plausible (slow) time ewolution
of ﬁﬂ and KCG‘

Idicative FG-3 critical line (one and the . same for
all sequence types) corresponding to EQT = K¢ = K and
all J's ‘equal among them (and equal to J). K* refers

to the "isotropic" cxitical point of Fig. 1.



CBPF-NF=-002/85

Fig. 4 -~ Idicative FG-IG critical lines corresponding to the
growth of difgerent polymen sequences (not only dif-
ferent sequence types; see the text). The dashed line
is a symmetry axis of some sequences {(e.g., ACAC...,
AGAG...); the dotted lines indicate the value K* of
all iprevious figures. The arrows indicate a plausible

(slow) time evolution of KAT and KCG’
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