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Abstract

The symmetry algebra of a QFT in the presence of an external EM background (named
\residual symmetry") is investigated within a Lie-algebraic, model independent scheme.
Some results previously encountered in the literature are here extended. In particular we
compute the symmetry algebra for a constant EM background in D=3 and D=4 dimen-
sions. In D= 3 dimensions the residual symmetry algebra is isomorphic to u(1)�Pc(2),
with Pc(2) the centrally extended 2-dimensional Poincar�e algebra. In D=4 dimension the
generic residual symmetry algebra is given by a seven-dimensional solvable Lie algebra
which is explicitly computed. Residual symmetry algebras are also computed for speci�c
non-constant EM backgrounds.
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1 Introduction

The issues of QFTs in an external (constant) EM background gained interest recently
with the Seiberg and Witten's observation [1] that an ordinary theory in a constant EM
background can be reformulated as a non-commutative gauge theory.

The problem of determining the symmetry algebra of a QFT in a constant EM back-
ground has been addressed and solved, for the very speci�c two-dimensional free massive
complex boson model minimally coupled to an external gauge �eld, in [2]. It was proven
in that work that its symmetry algebra coincides with the centrally extended Poincar�e
algebra in 1 + 1 dimension, previously investigated in a series of papers [3, 4].

In the present work we extend the results of [2]. By using solely Lie-algebraic and
model-independent methods we compute the symmetry algebra of di�erent classes of
QFTs coupled to a given external EM background. Throughout the text we call such
symmetry algebras \residual symmetries". It is worth stressing that, due to the presence
of central extensions, the residual symmetries are not subalgebras of the original symmetry
algebra in the absence of the external EM background (such an algebra is given by the
direct sum of the Poincar�e algebra and a global U(1) charge).

More speci�cally, we prove that the residual symmetry algebra of a three-dimensional
Poincar�e invariant QFT in a constant EM background is given by the 5-dimensional
solvable Lie algebra u(1)�Pc(2), where Pc(2) is the two-dimensional centrally extended
Poincar�e algebra whose signature, Euclidean or Minkowskian, is determined by the relative
strength of the constant external electric versus magnetic �eld.

The results of [2] in 1 + 1 dimensions are consistently recovered from our own results
after performing a dimensional reduction.

Furthermore, we compute the residual symmetry algebra for a four-dimensional Poincar�e
invariant QFT in a generic constant EM background. The resulting symmetry is a 7-
dimensional solvable Lie algebra explicitly presented in formulas (21).

The residual symmetry algebra in the presence of non-constant EM backgrounds has
also been computed in various cases and the results are here presented.

The scheme of the paper is the following. In the next section we illustrate the Lie-
algebraic method which allows, in a model-independent manner, to determine the residual
symmetry generators and the corresponding algebra. In section 3 we present the resulting
residual symmetry algebra for a D = 3 QFT in the presence of a constant EM �eld. In
section 4 the residual symmetry algebra is computed for a QFT in the ordinary D = 4
Minkowski space-time in the presence of a constant EM background. In section 5 the case
of a non-constant EM background is treated in some speci�c examples. Finally, in the
Conclusions, we make some comments about our work, drawing attention to its possible
applications and outlining the future investigations.

2 Residual symmetries and their generators.

Let us discuss in detail for the sake of simplicity the case of the residual symmetry for
generic Poincar�e-invariant �eld theories in (2 + 1)-dimension, coupled with an external
constant EM background. The generalization of this procedure to higher-dimensional
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theories and non-constant EM backgrounds, such as those studied in Sections 4 and 5, is
straightforward and immediate.

In the absence of the external electric and magnetic �eld, the action S is assumed to
be invariant under a 7-parameter symmetry, given by the six generators of the (2 + 1)-
Poincar�e symmetry which, when acting on scalar �elds (the following discussion however
is valid no matter which is the spin of the �elds) are represented by

P� = �i@�;
M�� = i(x�@� � x�@�); (1)

(the metric is chosen to be +��), plus a remaining symmetry generator corresponding
to the internal global U(1) charge that will be denoted as Z.

It is further assumed that in the action S the dependence on the classical background
�eld is expressed in terms of the covariant gauge-derivatives

D� = @� � ieA�;

with e the electric charge.
In the presence of constant external electric and magnetic �elds, the F �� = @�A� �

@�A� �eld-strength is constrained to satisfy

F 0i = Ei; F ij = �ijB; (2)

where �; � = 0; 1; 2 and i; j = 1; 2. The �elds Ei and B are constant. Without loss of
generality the x1, x2 spatial axis can be rotated so that E1 � E, E2 = 0. Throughout
the text this convention is respected.

In order to recover (2), the gauge �eld A� must depend at most linearly on the coor-
dinates x0 � t, x1 � x and x2 � y.

The gauge-transformation

A� 7! A�
0 = A� +

1

e
@��(x

�) (3)

allows to conveniently choose for A� the gauge-�xing

A0 = 0;

Ai = Eit� B

2
�ijx

j: (4)

The above choice is a good gauge-�xing since it completely �xes the gauge (no gauge-
freedom is left). It will be soon evident that the residual symmetry is a truly physical
symmetry, independent of the chosen gauge-�xing.

Due to (4), the action S explicitly depends on the x� coordinates entering A�. The
simplest way to compute the symmetry property of an action such as S which explicitly
depends on the coordinates consists in performing the following trick. At �rst A� is
regarded on the same foot as the other �elds entering S and assumed to transform as
standard vector �eld under the global Poincar�e transformations, namely

A�
0(x�0) = ��

�A�(x
�) (5)



CBPF-NF-002/02 3

for x�0 = ��
�x

� + a�.
For a generic in�nitesimal Poincar�e transformation, however, the transformed A�

gauge-�eld no longer respects the gauge-�xing condition (4). In the active transformation
viewpoint only �elds are entitled to transform, not the space-time coordinates themselves.
A� plays the role of a �ctitious �eld, inserted to take into account the dependence of the
action S on the space-time coordinates caused by the non-trivial background. There-
fore, the overall in�nitesimal transformation �A� should be vanishing. This result can
be reached if an in�nitesimal gauge transformation (3) �g(A�) can be found in order to
compensate for the in�nitesimal Poincar�e transformation �P (A�), i.e. if the following
condition is satis�ed

�(A�) = �P (A�) + �g(A�) = 0: (6)

Only those Poincar�e generators which admit a compensating gauge-transformation satis-
fying (6) provide a symmetry of the S action (and therefore enter the residual symmetry
algebra). This is a plain consequence of the original assumption of the Poincar�e and
manifest gauge invariance for the action S coupled to the gauge-�eld A�.

Notice that the original Poincar�e generators are deformed by the presence of extra-
terms associated to the compensating gauge transformation. Let p denote a generator
of (1) which \survives" as a symmetry in the presence of the external background. The
e�ective generator of the residual symmetry is

p̂ = p + (: : :);

where (: : :) denotes the extra terms arising from the compensating gauge transformation
associated to p. Such (: : :) extra terms are gauge-�xing dependent. The \residual sym-
metry generator" p̂ can only be expressed in a gauge-dependent manner. However, two
gauge-�xing choices are related by a gauge transformation g. The residual symmetry gen-
erator in the new gauge-�xing, denoted as ~p, is related to the previous one by an Adjoint
transformation

~p = gp̂g�1: (7)

Therefore the residual symmetry algebra does not dependent on the choice of the gauge
�xing and is a truly physical characterization of the action S.

The extra-terms (: : :) are necessarily linear in the space-time coordinates when asso-
ciated with a translation generator, and bilinear when associated to a surviving Lorentz
generator (for a constant EM background). Their presence implies the arising of the
central term in the commutator of the deformed translation generators.

3 The residual symmetry for the (2 + 1) Poincar�e

case.

The residual symmetry algebra of the (2+1)-Poincar�e theory involves, besides the global
U(1) generator Z, the three deformed translations and just one deformed Lorentz gener-
ator (the remaining two Lorentz generators are broken).
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Within the (4) gauge-�xing choice the deformed translations are explicitly given by

P0 = �i@t � eEx;

P1 = �i@x � e

2
By;

P2 = �i@y + e

2
Bx: (8)

The deformed generator of the residual Lorentz symmetry is explicitly given, in the same
gauge-�xing and for E 6= 0, by

M = i(x@t + t@x)� i
B

E
(y@x � x@y) +

e

2
(Et2 + Ex2 �Bty): (9)

The residual symmetry algebra is given by

[P0; P1] = iEZ;

[P0; P2] = 0;

[P1; P2] = iBZ;

[M;P0] = �iP1;

[M;P1] = �iP0 � i
B

E
P2;

[M;P2] = i
B

E
P1: (10)

The U(1) charge Z is no longer decoupled from the other symmetry generators. It appears
instead in (10) as a central charge.

Please notice that the residual symmetry algebra in (1 + 1) dimensions (computed in
[2] for a speci�c model) is recovered from the P0; P1;M;Z subalgebra. It corresponds to
the centrally extended 2D Poincar�e algebra thoroughly studied in [4].

The 5-generator solvable, non-simple Lie algebra of residual symmetries admits a con-
venient presentation. The generator

~Z � BP0 + EP2 (11)

commutes with all the other � generators

[ ~Z; �] = 0; (12)

so that the residual symmetry algebra is given by a direct sum of u(1) and a 4-generator
algebra. The latter algebra is isomorphic to the centrally extended two-dimensional
Poincar�e algebra. Such an algebra is of Minkowskian or Euclidean type according to
whether E > B or respectively E < B (the case E = B is degenerate). This point can
be intuitively understood due to the predominance of the electric or magnetic e�ect (in
the absence of the electric �eld the theory is manifestly rotational invariant, so that the



CBPF-NF-002/02 5

Lorentz generator is associated with the Euclidean symmetry). We have explicitly, for
B > E, that the algebra

[M;S1] = iS2;

[M;S2] = �iS1 (13)

is reproduced by

M =
Ep

B2 � E2
M;

S1 = P0 +
B

E
P2;

S2 =

p
B2 � E2

E
P1; (14)

while for E > B the algebra

[ ~M;T1] = iT2;

[ ~M;T2] = iT1; (15)

is reproduced by

~M =
Ep

E2 �B2
M;

T1 = P0 +
B

E
P2;

T2 = �
p
E2 �B2

E
P1: (16)

In both cases the commutator between the translation generators S1, S2, and respectively
T1, T2, develops the central term proportional to Z which can be conveniently normalized.

The residual symmetry algebra of the (2 + 1) case for generic values of E and B (the
E = B case is degenerate) is therefore given by the direct sum

u(1) �Pc(2): (17)

Besides the two charges Z, ~Z an extra charge is given by the order two Casimir of the
centrally extended Poincar�e algebra, see [4] for details.

4 The residual symmetry in 4 dimensions.

In D = 4 dimensions, for generic values of the constant electric and magnetic �eld, a
convenient gauge-�xing is provided by

A0 = 0;

A1 = E1t;

A2 = E2t+Bz;

A3 = 0: (18)
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We notice that, without loss of generality, we assume the constant external magnetic �eld
�!
B parallel to the x axis, while E1, E2 denote the components of the external electric

�eld, respectively parallel and transverse to
�!
B . In the following we consider the case

E1; E2; B 6= 0.
The deformed translation generators are now

P0 = �i@t � e(E1x+ E2y);

P1 = �i@x;
P2 = �i@y;
P3 = �i@z � eBy:

(19)

For what concerns the Lorentz generators, only two of them survive as symmetry gener-
ators in the given external background. They are given by

M = i
B

E1

y@t � iz@x + i
B

E1

t@y + i(
E2

1
+B2

E1E2

)z@y + ix@z � i(
E2

1
+B2)

E1E2

)y@z +

eB(
�E2

1
+ E2

2
�B2

2E1E2

)y2 + eB(
E2

1
+B2

2E1E2

)z2 + e
B2

E1

tz + eBxy+ e
E2B

2E1

t2;

N = ix@t + i
E2

E1

y@t + it@x + i
E2

E1

t@y + i
B

E1

z@y � i
B

E 1

y@z +

e

2E1

(E2

1
+ E2

2
)t2 +

e

2
E1x

2 +
e

2E1

(E2

2
�B2)y2 +

e

2E1

B2z2 + eB
E2

E1

tz + eE2xy:(20)

It is convenient to normalize the generators according to

T1 = (1=
q
E2)P0;

T2 = (1=
q
E2)P2;

S1 = (
q
E2=E1)P1;

S2 = �(
q
E2=B)P3:

The resulting residual symmetry algebra is a three-graded non-simple solvable Lie algebra,
given by the commutators

[Ti; Sj] = i�ijZ;

[Ti; Tj] = i�ijZ;

[Si; Sj] = 0;

[M;T1] = �i B
E1

T2;

[M;S1] = i
B

E1

S2;

[M;T2] = �i(E
2

1
+B2

E1E2

)
B

E2

S2 � i
B

E1

T1;
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[M;S2] = i(
E2

1
+B2

E1B
)T2 � i

E1

B
S1;

[N;T1] = �iE1

E2

S1 � i
E2

E1

T2;

[N;S1] = �iE2

E1

T1;

[N;T2] = �i B2

E2E1

S2 � i
E2

E1

T1;

[N;S2] = i
E2

E1

T2;

[M;N ] = 0: (21)

Such an algebra admits two independent Casimir operators of order two, given by

C1 = T1T1 + 2
B2

E2

2

T1S2 � 2
E2

1

E2

2

S1T2 + (�1 + B2

E2

2

+
E2

1

E2

2

)T2T2 +

(
B4

E4

2

+
B2E2

1

E4

2

)S2S2 � 2i
BE1

E2

2

E1MZ + 2i
E1

E2

NZ;

C2 = 2
B2

E2

1

T1S2 + S1S1 � 2S1T2 + (1 +
B2

E2

1

)T2T2 +

(
B2

E2

1

+
B2

E2

2

+
B4

E2

1
E2

2

)S2S2 � 2i
B

E1

MZ: (22)

5 Residual symmetries in the presence of a non-

constant EM background.

In the case of a non-constant EM background, the surviving symmetry generators are
further constrained. Some illustrative cases are reported below.
i) Linear external EM �eld in (1 + 1) dimensions.

For a �eld E, given by

E = E1x+ E2t; (23)

a convenient gauge-�xing is

A0 = 0;

A1 =
E2

2
t2 + E1xt: (24)

There exists only one symmetry generator left, given by

P = �i@t + i
E2

E1

@x � e

2
E2x

2: (25)

ii) Quadratic external EM �eld in 1 + 1 dimensions.
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For the external �eld

E = E1x
2 + E2t

2 + E12xt;

the gauge-�xing is given by

A0 = 0; (26)

A1 = E1x
2t+

E2

3
t3 +

E12

2
xt2:

All spatial symmetries are broken unless the condition

E12 = 2
q
E1E2

is satis�ed. In this particular case, there exists one symmetry generator given by

P = �i@t + i

s
E2

E1

@x � e

3
E1x

3: (27)

iii) Linear external EM �eld in 2 + 1 dimensions.
In the most general temporal-gauge case, two independent deformed translations sur-

vive as symmetry generators (all Lorentz generators are broken), if the external EM �eld
is constrained to satisfy

E1 = �2x+ �Dy + F;

E2 = �Dx +Dy +G;

B = B1t+ �B2x+B2y +B3: (28)

(� arbitrary).
The gauge-�xing is

A0 = 0;

A1 = �2Dtx+ �Dty + Ft; (29)

A2 = �
B2

2
x2 + �Dxt+Dty +B2xy +B3x+Gt: (30)

The symmetry generators

P0 = �i@t � e

2
�2Dx2 � e

2
Dy2 � e�Dxy � eFx� eGy;

P1 = �i@x + i�@y � e

2
B2y

2 � eB3y; (31)

satisfy the centrally extended algebra

[P0; P1] = �ie(F � �G): (32)

Finally, let us comment that for a conformal theory in 1 + 1 dimension, whose original
symmetry is V ir � V ir, in the presence of an external background all the symmetry
generators (apart the Poincar�e generators for the cases already considered) are broken.
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6 Conclusions

In this work we have extended the results of [2] in two directions. We showed the model-
independent, Lie-algebraic arising of the result of [2] (originally computed for the free
massive complex boson case in 1 + 1 dimension, externally coupled to a constant EM
background) and later we computed the residual symmetries in the presence of constant
EM backgrounds for both the D = 3 and the ordinary Minkowskian D = 4 theories.

For a constant EM background the residual symmetry of a D = 3 theory corresponds
to the algebra u(1) �Pc(2), where Pc(2) is the centrally extended 2D Poincar�e algebra,
widely investigated, both mathematically and in physical applications, in a series of papers
[3, 4]. In [3] it has been applied, e.g., to the construction of lineal-gravity theories in 1+1
dimensions. Due to the presence of the central term, the adjoint representation of Pc(2)
is not faithful (see [4]). On the other hand a 4-dimensional faithful representation is
constructed in the light of the Kirillov's method (see [5] for details). This method is likely
to be extended to compute a faithful representation for the seven-dimensional solvable Lie
algebra (21) corresponding to the residual symmetry algebra in a constant EM background
in 4D.

The residual symmetry algebras as those computed above play the same role as the
ordinary Poincar�e algebras, in the case of QFTs living in a given constant (classical) EM
background.

It is worth mentioning the connection of such residual symmetry algebras with the
arising of non-commutative structures, due to the presence of the central term in the
commutators of the (deformed) momenta. A corresponding dual picture can be given
which manifests the non-commutativity at the level of the space-time coordinates. The
connection between such two dual pictures has been fully explored (for a given speci�c toy
model), e.g., in [6] (see also [7]). In the references [8] non-relativistic (2 + 1)-dimensional
theories in an external background have been investigated.

One of the seemingly most promising line for future investigations consists in explicitly
linking the role of the \deformed Poincar�e generators", as those computed in section 5 in
the presence of non-constant EM backgrounds, with the phenomenon of pair-production,
observed for speci�c linear EM backgrounds such as light-cone external electric �elds [9].
This would aim at a Lie-algebraical characterization of the pair-production phenomenon.

Finally, the extension of the above construction to, let's say, supersymmetric theo-
ries, will provide the deformation of the supersymmetry generators in the presence of an
external EM background.
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