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Abstract

We deduce well-posed formulae for wave �eld extrapolation in depth-dependent

mediums.
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1 Introduction

The basic starting point in the subject of wave �eld extrapolation and its application

to seismic inverse procedures is the derivation of the acoustic pressure �eld U(~r; z; t),

developing in a medium (upper half-space z > 0) with a constant refraction index, from

a known pressure �eld data U(~r; z = 0; t) at its surface. In section II of this note, we

correct mathematically some of those results of ref. [1] by considering the well-posedeness

formulation of the problem. Additionally, in section III we present similar news results in

the context of a depth-dependent medium for Paraxial and full wave propagation results

suitable for extrapolation in water geophysical mediums and �nally, we end the section

by brie
y sketching the constant-anisotropic medium case.

2 The Depth-Extrapolation Problem for a Medium

with a Constant Refraction Index

Let us consider the acoustic wave �eld equation for a pressure �eld developing in a

medium (upper half-space z > 0) de�ned by a constant refraction index and from a

known pressure �eld data U(~r; z = 0; t) but added with depth derivative at the surface,

namelly:
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� (k2x + k2y)

#
U~k(z; t) = 0 (1)

U~k(z; t)jz=0 = f~k(t) (2)

@U~k

@z
(z; t)jz=0 = g~k(t) (3)

where

U(~k; z; t) =
Z +1

�1
dkxdky exp(i~k � ~r)U~k(z; t) (4)

Let us analyze �rstly the case of non-evanescent waves ([1]) de�ned by the condition

j~kj2 < w2

v2
. Here

U~k(z; t) =
Z +1

�1
dw exp(iwt)U~k(z;w) (5)
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The time-domain Fourier transformed �eld solution of eq. (1)-eq. (3) is explicitly

(exactly) given by

U~k(z;w) = F+(w;~k)exp
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with
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F�(w;~k) =
1

2

0
@f̂k(w) + i
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and

f̂k(w) =
Z +1

�1
dt exp(iwt)fk(t) (9)

ĝk(w) =
Z +1

�1
dt exp(iwt)gk(t) (10)

Note that only on this situation of non-evanescent case, one could claim to obtain

well-posed extrapolating formulae with our new condition eq. (3), opposite to those similar

results presented in ref. [1] without this condition.

Let us thus introduce the following variable change in the Fourier-Integral eq. (4)

for the acoustic pressure �eld: w0 = w; kx = pxw; ky = py w ([1]). We thus, have the

following result:

U(t; z;~r) =
Z +1

�1
d2~k ei

~k�~r
Z +1

�1
dw eiwt(U~k(z;w)) =Z 1=c

�1=c
dpx

Z 1=c

�1=c
dpy

Z +1

�1
dw � eiwt(w2)eiw(~p�~r)8<

:eiw
�q

1
c
2�(~p)2

�
z

F+(w; ~pw) + e
�iw
�q

1
c
2�(~p)2

�
z

F�(w; ~pw)

9=
; (11)

The above expression by its turn is the sum of four Fourier integrals which are going

to be analyzed. The �rst one is exactly given by the following expression (here f̂~k(w) �
f̂ (w;~k))

U (1)(t; z;~r) =
Z 1=c

�1=c
dpx

Z 1=c

�1=c
dpy

Z +1

�1
dw � w2e

iw

h
t+~p�~r+

�q
1
v
2�(~p)2

�
�z
i
1

2
f̂(w; ~pw) (12)
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As in ref. [1], we can re-write eq. (12) as a depth-extrapolator integral operator (by

means of a t-convolution integral)

U (1)(t; z;~r) =
Z 1=c

�1=c
dpx

Z 1=c

�1=c
dpy R

(1)(z; t; ~r; p)(�)t ~U(z = 0; t; p) (13)

where the surface observed pressure �eld is given by

~U (z = 0; t; p) =
Z +1

�1
dw e+iwtf̂ (w; ~pw) (14)

and the depth-extrapolation Kernel is written explicitly as ([2])
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The other part of the pressure �eld in eq. (11) corresponding to the knowledgement of

the depth-derivative surface data eq. (3) and needed to turn the extrapolation problem

a well-posed mathematical problem is given by a analogous Fourier integrals formulae
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~Ut(z = 0; t; ~p) =
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The other two integrals are obtained by just changing z ! �z in the above obtained

formulae.

In the case of evanescent waves ([1]) de�ned by the condition k2x + k2y � w2

v2
, the

associated well-posed problem is governed by the following initial and boundary conditions

imposed on eq. (1)

U~k(z; t)
���
t=0

= f~k(t) and lim
z!1U~k(z; t) = 0 (18)
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The solution takes, now, the following form

U (3)(z; t; ~r; ~p) =
Z
j~pj� 1

c

d2~p
Z +1

�1
dw eiwt w2 eiw(~p�~r) exp

0
@�w
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Z
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d2p R(3)(z; t; ~r; ~p)(�)t ~Ut(z = 0; t; ~p) (19)

with the evanescent depth-extrapolating Kernel ([2])
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3 Exact Formulae for Wave Field Extrapolation for

Paraxial and Full Wave Equation in a Depth-Dependent

Medium

In water geophysical mediums, the general harmonic acoustic pressure �eld U(~r; z; t) =Real

( (~r; z; t)exp i(kz � wt)) satis�es the Paraxial wave equation

"
i
@

@z
+

1

2k
�~r � k�(z)

#
 (~r; z) = 0 (21)

where �(z) = 1�n2(z) with n(z) denoting the depth-dependent medium refraction index

and w = vk is the pressure �eld dispersation relation.

Let us consider the extrapolation problem of given the observed surface �eld

 (~r; z = 0) = '(~r); how one determines the full �eld  (~r; z) in terms of '(~r).

In order to solve the above cited extrapolation problem, we consider the Ansatz in eq.

(21)

 (~r; z) =
Z +1

�1
d2~� C(~�)�(~�; z)ei~��~r (22)

It is straightforward to determine the coe�cient �(~�; z), namelly:

�(~�; z) = exp

 
�ik

Z z

0
�(s)ds+ i

(~�)2

2k
z

!
(23)

and

C(~�) =
Z +1

�1
d2r e�i~��~r'(~r) (24)
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Or in convolution form

 (~r; z) =
Z +1

�1
d2r0 � k(r � r0; z)'(r0) (25)

with

k(r � r0; z) =
Z �1

�1
d2~� �(~�; z)ei~� � (~r � ~r0) (26)

Just for completeness, let us outline the generalization of the above procedure for the

full wave equation in a z-dependent velocity medium (see eq. (1)-eq. (3))
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� 1

v2(z)

@2

@t2
� (k2x + k2y)

#
U~k(z; t) = 0 (27)

U~k(z; t)
���
z=0

= f~k(t) (28)

@U~k

@z
(z; t)

���
z=0

= g~k(t) (29)

Let us consider the depth coordinaate change

z0 =
Z z

0

ds

v(s)
(30)

The wave equation thus, takes the following form
�
v0 � dv(z)

dz

�
(
@2

@z02
� @2

@t2
+ [v2v0](z0)

@

@z0
� (~k)2[v2](z0)

)
U~k(z; t) = 0 (31)

U~k(z
0; t)

���
z0=0

= f~k(t) (32)

@2

@z0
U~k(z

0; t)
���
z0=0

= v(0)g~k(t) (33)

We can are-write eq. (31) in the more suitable form

 
e�w(z

0)
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#
e+w(z0)

!
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2
dw(z0)
dz0

= [v2v00](z0) (35)
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dw
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!2
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d2w

dz02

!
� (~k)2(v2)(z0) (36)
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After a time-Fourier transform we are able to reduce the solution of the full wave

equation to the one-dimensional depth wave equation with given initial conditions

 
d2

dz02
+ (w2 + 
2(z0; (~k)2))

!
V~k(z

0; w) = 0 (37)

V~k(z
0; w)

���
z0=0

= f̂~k(w) (38)

d

dz0
V~k(z

0; w)
���
z=0

= v(0)ĝ~k(w) + [v2v00](0)f̂~k(w) (39)

If one is able to solve exactly (or numerically) the above written initial-value problem,

the complete solution of eq. (27) will be given exactly by the extrapolation formulae

below in the Fourier spatial-time domain

U~k(z;w) = (e�w(z
0)V~k(z

0; w))
���
z0 =

.z

0

ds

v(s)

(40)

Finally, let us comment the case of extrapolation problem in a homogeneous anistropic

medium where the pressure vectorial �eld is governed by the following vectorial wave

equation (with 1 � i; j; k; ` � 3)

@2

@t2
U i(~r; t) = Cijk`

@2Uk

@xj@x`
(~r; t) (41)

with Cijk` denoting the medium elastic constants.

In the extrapolation problem, we make the assumption that the 3� 3 matrix Ci3k3 =

Aik related to the depth derivative in eq. (41) is inversible. As a consequence of this

assumption one can replace eq. (41) by the following depth-dependent wave propagation

problem in the Fourier domain (with (~j; ~̀) 2 ff1; 2g � f1; 2gg and

d2U i(z;~k;w)

d2z
+ i(~k)`[A

�1]irCr3s`
dU s(z;~k;w)

dz
+
�
[A�1]irw2

�
U r(z;~k;w) ��

[A�1]irCr~jm~̀(~k)~j(~k)~̀
�
Um(z;~k;w) = 0 (42)

with the well-posedeness initial and boundary conditions

U i(z;~k;w)
���
z=0

= f i(~k;w) (43)

@zU
i(z;~k;w)

���
z=0

= gi(~k;w) (44)

lim
z!+1 U

i(z;~k;w) � 0 (45)
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or in the �rst-order form 6� 6 system of ordinary di�erential equations on C0([0;1])

d

dz

2
64 U i(z;~k;w)

V i(z;~k;w)

3
75 =

2
64 (1)3�3 (0)3�3�

�i(~k)`[A�1]Cr3s`

�
3�3

�
�[A�1]imw2 � [A�1]i`C`~jm~̀(~k)~j(

~k)~̀
�
3�3

3
75
2
64 �i(z;~k;w)

U i(z;~k;w)

3
75
(46)

The formal solution of eq. (46) is straightforward given by a exponential matrix

2
64 ~U(z;~k;w)

~V (z;~k;w)

3
75 =

exp

0
B@
2
64 (1)3�3 (0)3�3�

�i(~k)`[A�1]Cr3s`

�
3�3

�
�[A�1]imw2 � [A�1]i`C`~jm~̀(~k)~j(

~k)~̀
�
3�3

3
75
1
CA

2
64 ~f (z;~k;w)

~g(z;~k;w)

3
75 (47)

It is worth remark that explicitly solutions for eq. (47) need the Jordan form of the

matrix ([4]), a very laborious task.

At this point, we propose to make an \Anisotropic Plane-Wave" expansion similar

to eq. (6)-eq. (10) to write directly Fourier integral representations for the initial value

problem eq. (42)-eq. (45). Let us sketchy our procedure.

As �rst step, let us remark that any system of ordinary di�erential equation of the

form

d2U i(z)

d2z
+ �ij

dU j(z)

dz
+ �ikU

k(z) = 0 (48)

U i(0) = ai (49)

dU i

dz
(0) = bi (50)

can be put in the following somewhat canonical form without the �rst order derivative

term d=dz
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dz2
�ij

 
[�]� [�]2

4

!!
ij

�
e�

[�]
2
z ~U(z)

�
j
= 0 (51)



{ 8 { CBPF-NF-002/00

e�
[�]
2
z ~U(z)

���)z=0 = ai (52)

d

d2

�
e�

[�]
2
z ~U(z)

� ���
z=0

= � [�]

2
ijaj + bi (53)

In order to solve eq. (51) in a straightforward way, let us make the Plane-Wave onsatz

for ~S(z) = e�
[�]
2
z ~U(z), namelly:

~S(z) = ~Aeiwz (54)

As a consequence, we have that w2 = f�+; ��; �0g are the eigenvalues of the matrix

[�]� [�]2=4 and ~A = f ~A+; ~A�; ~A0g are its associated linear independent eigenvectors.

The general solution of eq. (51), thus, takes the simple complex form with six unknow

constants fc+; ~c+; c�; ~c�; c0; ~c�g

~S(z) = c+ ~A+e
i(
p
�+)z + ~c+ ~A+e

i(
p
�+)z + c� ~A�ei(

p
��)z + ~c� ~A�ei(

p
��)z

+c0 ~A0e
i(
p
�0)z + ~c0 ~A0e

i(
p
�0)z (55)

The six unknow constants fc+; ~c+; c�; ~c�; c0; ~c0g are easily evaluated by adjusting eq.

(55) to the initial conditions eq. (52)-eq. (53) (a 46 � 6 linear system)

8>>>>><
>>>>>:

c+ ~A+ + ~c+ ~A+ + c� ~A� + ~c� ~A� + c0 ~A0 + ~c0 ~A0 = ai

(
p
�+)c+ ~A+ � (

p
�+)~c+ ~A+ +

p
��c� ~A� �

p
��~c� ~A�

+
p
�0c0 ~A0 �

p
�0~c0 ~A0 = � [�]

2 ijaj + bi

(56)

In our case eq. (42)-eq. (45), the Fourier-integral solution based on the ansatz eq.

(55) will involves the explicitly expressions for the medium tensor crsen and a (~k;w) {

variables dependence as a consequence a detailed analysis of the algebraic singularities

on the associated integration formulae similar to those analyzed on ref. (5) and reference

therein will be needed. This work will be presented elsewhere.
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