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ABSTRACT: We study the biological motion of a magnetotactic
_ bacterium. Using the formalism of rigid body dynamics together
with the fact that Reynclds number is small, we derive the
equations of motion. Magnetotactic bacterium is treated in the
formalism as a general case of a non-magnetotactic one. The
equations of motion are integrated numerically and comparison with
experimental data are made. It is showed how the model can help to
treat experimental data. It is argued Lhaﬁ it is biocloglcaly
advantageous feor a magnetotactic bacterium to have a flagellum

highly asymmetric.
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1) Intreduction.

Motile bacteria swim by means of flagella CBerg, 1875, which
consists of rigid helical tubes containing a single type of
protein subunit. Each flagellum is attached to itis base to 2a
protein disc embedded in the bacterial membrane by a flexible
heok. This disc is part of a molecular rotor C(Manscon et al., 1977D
that produces a torque on flagellum to rotate and turns 1t,
Several flagellar filaments emerge randomically on the sides of
the bacterial body. Usually, flagellum is a long organelle when
compared to bacterial dimensions. In E. Coli, for example, each
flagellum has typical dimensions of about three times the body
lenght and each cell has about six flagellar filfments.

Two rotational directions with respect to Lhe axis parallel
to the velocity are cobserved. Counterclockwise rdtation, when the
angular velocity is anti-parallel to the velocity direction, and
clockwise rotation. Counterclockwise rotation makes flagellar
filaments to form a synchronous bundle that pushes bacterial body
forward. On the cother hand, clockwise rotation disperse flaggllar
filaments and each flagellum turns indepedently. In the first case
the bacterium performs an helical motion while in the second case
the bacterium tumbles. |

It is observed that the cells align the axis of its helical
trajectory with the direction of the stimulus. This behaviocur is

strikingly observed in the case of magnetotactic Dbacteria

(Bl akemore, 1975). Magnetotactic microorganisms are motile cells
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that possess intracellular magnetic particles CLins de Barros &
Esquivel, 1985; Farina et al., 1980; Mann &t al., 19880; Frankel &
Blakemore, 1990) Ciron oxide or iron sulfide crystallitesd which
impart the cell a permanent magnetic dipole moment. Each
intracelliular magnetic particle is enveloped by a membrane forming
a specialized organelle, the magnetosome. The permanent cell
magnetic moment interacts with an external magnetic field. This
interaction produces a torque on the cell body that orients the
cell to the field line. Reversion of the external field produces a
new orientation of the cell and the trajectory makesb a U-turn
CEsquivel & Lins de Barros, 19865,

Twe types of magnetotactic microorganisms with the respect to
the relative nﬁagnotic dipole orientation are ’rfound in natural
samples CLins de Barros et al., 19900 . South-seeking
microorganisms, found preferentially on the “south magnetic
hemisphere, are microorganisms in which the magnetic dipole is
antiparallel to the motion direction. These organisms orient to
the local field line and swim downward in the south magnhetic
_hemisphere (where the [field points upwards). North-seeking
microorganisms are similar to the south-seeking cells but the
magnetic dipole is in opposite direction. They swim downward in
the north magnetic hemisphere. In gecmagnetic equater the
geomagnetic fleld is parallel to the earth surface and both
magnetotactic microorganisms are found in the same approximate
proportion (Frankel et al., 1981)>. Magnetotaxis, that is, the
motility directed by a magnetic field, seems to be an adaptative
mechanism in which the magnetic field acis as a stimulus.

The orientation mechanism of magnetotactic cells is .well
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understood. The direct interaction between cell magnetic dipole
moment and the external field produces a torque on the cellular
body that orients the cell to the field line.

In this work we study the helical motion of a magnetotactic
pacterium. The general case considered is that of a spherical
magnetotactic bacterium swimming in an isotopic viscous medium
under the flagellar action. Experimental observations were made
using dark field high resoclution optical microscepy with low
exposure photo technique. IThis procedure enables to obtain a track
of a bacterium swimming in ‘a viscous medium Cwaterd. This track
can be interpreted as the tiwo-dimensional proejection of a

tridimensional helical path on the plane of emulsion.

)

2 _ Mathematical Introduction.

The mot,:l.o'n of a bacterium in a viscous medium 1S
characterized by a condition of low Reynolds number (Purcell,
. 1977). Reynolds number is a dimensionless parameter given by'the
ratio between inertial forces and viscous forces. In very low
Reynolds number regimen no inertial effects are observed and in
order to mantain a constant velocity 1t is necessary to apply a
constant force. In this circumstance, force is proportional to
velocity, in contrast to the Newtonian case where force |is
proportional to aceleration. This is accomplished via the
equations of motion neglecting all inertial terms. This procedure
is legitimate provided that Reynolds number is much less than

unity, which is just the case of microorganisms swimming in water
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CLhe case considered in this paper>).

The helical trajectory observed in motlile bacteria 1s a
consequence of the net force applied on the cell body due to
flagellar action. Torque generated by fiagellar rotation |Iis
bal anced by viscous drag due to counter -rotation of the cell and
thrust generated by flagellum action is balanced by viscous drag
due translation. It |is assumed that a perfectly symmetric
flagellum is not consistent with helical motion since in this case
there is no way to change the direction of the net force (if no
external magnetic fleld is present) and evidently the bacterium
will move in a straight line. For example, if one considers the
flagellum as a organelle possessing the shape of a circular
eylindrical helix with an integer number of burns C(Schreiner,
1971, rotation of flagellunm will produce a net f?rce responsible
for translation only, that is, no torque is produced by such a
force. On the other hand, if there is some kind of asymmetry, the
resulting force that pushes the cell forward produces also a
torque. Consequently, one can decompose the net force acting on
. the cell body into two compenents: one that does not produce
torque and another one that, besides translation, produces a
torque. This ;111 pe done in the next section without making
special assumption about the shape of the flagellum.

We will use the well established framework to treat a rigid
body problem (Goldstein, 1980): rotation is analyzed in the center
of mass reference frame considering the contribution of all the
external torques. Translation of the cell is described as a
translation of the center of mass reference frame.

Thermal disturbances are not considered despite brownian
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effect is important in bacterial scale. In our case, however,
thermal energy is much smaller than magnetic interaction or the
flagellar energy and can be considered later as a randomic

disturbance to be included in the numerical evaluation.

3> Mathematical Model.

One considers a spherical bacterium with radius R propelled
by a net force f Cdue to flagellar rotation) that acts in a fixed
peoint P on the cellular membrane. In order to take the effects of
asymmetries of the flagellum in an appropriate way, onhe decomposes
the net force into two components. The longtudishl component , ?L.
is along the direction that the bacterium would swim if there is
no asymmetry. This direction is defined as the same of the segment
OF where O is the center of the sphere. The other ccmponent..FT.
arises from asymmetries of flagellum and it is perpendicular to
the segment OP and actis at the poeint P For_this reason it is
. called transverse component. Since the transverse force accounis
for the fact that the flagellum is not symmetric, one must have
that, as the flagellum rotate with angular frequency w, ?T rotates
with the same frequency. The cell nmagnetic moment, m, is
considered, for simplicity, aligned parallel to OP and passing
trough O. The case where the magnetic moment is in an arbitrary
position in th; interior of the cell body will be done in a future
work as a generalization of the proposed model. However, this
simplification does not alter the essential resultis of this paper.

Flagellar geometry is not considered. The only contribution due to
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flagellar rotation is described by the net force # CFig. 1> and by
a couple associated to the flagellar rotor. Nom-magnetotactic
bacterium is, in this treatment, a jparticular case of a
magnetotactic one, in the sense that the non-magnetotactic
bacterium is a magnetotactic pacterium with zero magnetic moment.
Finally. the bacterium is considered to swim in a medium with
viscosity 7n-

As usual, we use Six coordinates to describe the general
motion of a bacterium. Three of these coordinates will describe
the rotation of the cell boedy in a reference frame where Lhe
center of mass O is at rest. The other three coordinates will

describe the translation of center of mass with respect to an

|
inertial frame, !

adRotation of the cell body.

Neglecting inertial effects, tLhe rotational equations of

motion of the cell body are given, in vector form, as
R+ R+ R+ N = o €1d

In the above equation ﬂc denotes the reaction couple over the
cell body due to the couple that generates flagellar rotation with
fregquency w. ﬂ_r denctes the torque produced Dby the transverse
force, ﬂu is the viscous torque and ﬁm is the magnetic torque.

- Since flagellum rotates with a constant angular frequency .,

the reaction couple has a constant magnitude:
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’ -
R.= -] N | &, ca>

where {31. 32. 33 > is a set of unit vectors assocliated with a set
of orthogonal axes, (xl. X0 Xg >, fixed in the cell body, whose
origin is at the center of mass. 33 is chosen to be collinear with
oP,

PT rotates with the flagellar frequency w in a plane
perpendicular to OP. Thus, assuming that the asymmetries of
flagellum does not change as the system evolves (Lhis means that

the flagellum stays rigid as it rotatesd, the transverse force

must have a constant magnitude and is given by

F_ = | £ | € cos wt e + sin wl e_ O 5 c3
T T 1 2 :

FT is applied at the point P, defined by the vector R =R 39. Then
RO =R xP_=| N |- sinwt & +coswté > C4d
T T T 4 2

where | ﬂTl = R | ?Tl = const.

The viscous torgque, ﬂv. is due to rotational viscous drag of
the spherical cell body rotating in a general way in a viscous
fluid. At low Reynolds number one has, for a sphere (Landau &

Lifshitz, 1959,

H =-8nnRPB3=-8annkRCw € +w o +w & 2 (B
¥ 1 1 2 2 a 9

r

where ) is the vector angular velocity of the cell body, whose

components are written, in terms of Euler angles, as
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w1 - é sin 8 sin y + @ cos ¥ CBad
w, = é sin & cos y — 6 sin y C6bD
w, = & cos € + @ ]

where the dots denotes total time differentiation.

Finally, to evaluate ﬂm it is necessary Lo assume an applied
external constant magnetic field B. If <x, y, 2 is a sat of
orthegonal axes representing a fixed reference frame where the
translation of the center of mass is specified, there is no loss
of generality to assume g pointed in the z~-direction. The magnetic

moment , ﬁ. ie assumed collinear to 39. Then

s &)

84
il

I

m —
a4

c8d

which gives the magnetic torque
ﬂm =mxB = | m | | B | stn ® Sﬂ ca

where 3n is a unit vector directed along the line of nodes:
:n = cos Y 3‘ - sin Yy 32 100

The Euler equations for the spherical bacterium are

w = - oa sitn wt + 3 sin & cos y Ciiad

w =a cos wt - 3 sin € sin Yy C1ibo
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W = -y C11C)

where a = |ﬂT|/BnnR’. = |ﬁ| |§| /SrmR’ and y = |nc|/8nnR’.

Solving Eqgs. .C11) for the angular velocitles é. & and @ che

obtalns
& = a csc @ cosCwl + ¥ Cl2ad
8 =3 sin & - a sinCwt + ¢ c12bd
v e~y -acot 8 cosCot + ¥ - C1ged

Thus, in this model, the net vector angular velocity acting

in the cell body is given by
B =3+ 0 33 13
When 3=0, the magnitude of the above vector is
O = [Cw - P2 + o512 C14d

Thus, as the flagellun undertakes counterclockwise rotation with
angular frequency w, the cell body rotates clockwise wiih angular
frequency » around the xa—axis. The angular frequency o gives the
rate of precession of the xé-axis. This precession produces Lhe
helical motion obseved in tracks of flagellated bacteria.

On the cother hand, when =0, ' has the form

Q= [Cw - 2% + o + f2sin%0 -2 a # sintut + 1*7° 18>
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b) Translatjon of the Center of Mass,

Egs. €12 describe the rotation of the cell body in a
reference frame where the center of mass is at rest. The obser ved
track in the film emulsion, or in a digitalized image from high
resolution optical microscopy, is associated to the translation of

the center of mass. The coordinates of the center of mass O are

specified by the position vector X = x ax + y ;y + 2 32

Neglecting inertial effects, the Newton equation of motion is
B +R_ +F =28 C16d
L T v

where ?u is the viscous drag force which, for a sphere, is given

by Stoke’s law CLandau & Lifshitz, 1056): ¢
PU = -B8nanRV <17

where v is the velocity vector whose components are X, 9 and =z.

Eq. Ci6) can be rewritten in the following form:

-» - R -+ -
v = v (cos wt e + sin wt ¢ + v e
T 1 2 L 8

=xe+ye+ze c18d
x ¥ z

where v_= |FT|/5nnR and vL=|?L|/BﬂnR.

-

The transformation of the unit vectors (31. ez. 39) fiwed in
—’

the cell body to the unit vectors (3“. e 32} is given by

r

31 = Ccos Y cos ¢ — cos 6 sin ¢ sin yd 3! Cload

. , , . -
+ Ccos y stn ¢ + cos 8 cos ¢ s$in yd 3v + sin yw sin @ e,
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32 = (- sin yw cos ¢ - cos 8 sin ¢ cos yd 3x C19bd
+ (- sin w sin ¢ + cos B cos ¢ cos yd ;v +coswsin93=

3. = s5in & sin @ 3" - stn & cos ¢ ;v + cos 6B az C19ed

Substituting Egqs. (190 inte the first line of Eq. €18 and making

some algebraic manipulations, one obtains

x = 4 a R (cos ¢ cosCwt + ) - sin ¢ cos 6 sinfwt + )]

3
1,2 .
+[ v? - -é—s— a® R? ] sin 8 stn ¢ Cc20ad
y = "'%" a R [sin ¢ cosCwt + y) + cos ¢ cos 6 sinCwt + yd)
2 16 =2 2 sz , ;
- vi - 5 a R sin 68 cos @ « C20bkD

g = 2 4R sin6 sinCwt + w0

3
1,2
+ [vz_%az Rz] cos O Cca0c)
where v> = u: + v:. with v = C4-352aR. The above equations

describe the translation of the center of mass.

Eqs. (12> teogether with Eqs. (200 determines completely the
motion of a magnetotactic bacterium. It must be noted that the
frequencies 3 and y are not present explicitly in Egs. (20). This
is due to the fact that the forces that produce the torques
assoclated with these frequencles do not contribute to

»

translation, that is, these torques are acted by couples.
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¢) Limit cases.
Ci) a = O.

One has in this case a magnetotactic bacterium that swims
with a symmetrical flagellum. The equations of motion (12> and

C20) reduce to the set of eguations

¢ =0 C21ad
6 = sin @ caibd
v= -7 ca21ed
x = v sin ¢ sin © c21dd
Q = - v 8sin @ cos ¢ C21e)
2 = v cos 8 C211D

"
The above equations can be integrated analytically and give a
planar trajectory. This limit case corresponds te the Bean model
CEsquivel & lLins de Barros.'lgasb. This model predicts the amount
of time required for the magnetotactic bacterium aligns the
magnetic moment to the magnetic field and the diameter of the
U-turn. These gquantities are given, after -working the above

equations and taking into account thermal disturbance in the

initial condition eo. by the formul ae

"9
BnnR embB
=" mB m[‘W] 220
z. 3
L = BRR MV £-<>)
m B

where k is the Boltzmann constant and T the absolute temperature.

The time tu given by Eq. (22) is time of the U-turn even in the
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case o ® O because the U shaped trajectory of the Bean model is
the mean trajectory in which the real one oscillates around. We
will use tu as a reference time for the following asymptotic
argument that will be useful in the analysis of experimental data
in the next section. When ¢ 2 tu » & belongs to a small interval
which have 11 as a lower or upper bound, depending on the case, The

solution of Eq. (21bd is

eced = 2 arctcm[ explfR D :an[—%‘-’-] ] ca24d

When t » tu. 8 tends to m asymptoticaly. This behaviocur is dﬁe to
the presence of the exponential function in the argument of the
arctangent. 'I'her‘tforé. if A is not small when t::é)mpared to a, the
oscillating contribution from flagellar asymmetries is damped by
the unperturbed sclution and ' is given by the same expression as
in the case in which # = 0. In the case of the Bean mcdel, where a
=0 and 3 # O, one has @ = [Cw ~ 22 + fZsin®01*"? for all t.
Then for t z tu. & = n and, therefcore, (I'= w - v.

Citd a =03 = 0,

The equations of motion are the same as equations (212,
except by Eq. (21bd which 1s now €=0. The solution is a straight
line. This very simple solution shows that a non—-magnetotactic
bacterium with a symmetric flagellum swims describing a straigth
path, as expected. In this case '= w - y for all t.

Ctiio aKw -y, # =0.

This case corresponds to a limit in which the equations of
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motion can be integrated regarding the flagellum asymmetries as a
weak perturbatien,that is, a non-magnetotactic bacterium with a
quasi -symmetric flagellum. Using a well known perturbative
treatment CArnold, 1873) for ordinary differential equations (see
appendix>, one obtains an approximate solution which is an
expansion of first order in the parameter oCw - 2 around its
zero value (that ls, around the non-perturbed solutiond.

The approximate soluticns in the center of mass reference

frame are

PCLd =~ *eaggs;ﬂs sin [Cw ~ 2] c2%ad

BCLd = 8o + w—‘f—r— CcoslCw - ¥2t) - 1) ¢+ ¢2sbd
X LY

YL & - yt - — cot 6o siniCw - O] C258cd

with initial conditions 0=y (O0)=0 and 8{0)=Fo.
By substitution of the above soluticens in Eqs. (20) and

making the same approximation and integrating, we obtain

v o v o
xCtd = —2 coslCw = pot)
_ w r> Cw = D
4 o R .
+ = - <7 sin(Cw - »3t] (26ad
4 a R 4 o R

v a ¢sc Bo
(o - r).z

sinlCw = 2¢)

+ [ o csc Bo

- sin Oo ] vt ¢ 26bd
w -7
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: 4 a R sin o 4 a R gin Bo
2 « 3 —5— -5 “w -7 cosiCw = »Ot)
a R sin 2° sinlCw ~ P¢)
Cw -
+ [ cos Bo + o sin Bo ] v t C26cd
w -y

with the initial conditions xCO0)=y(0d>=zC(0)=0.

The sclution given by Egs. (282 corresponds to the helical
motion cbserved experimentally in a non-magnetotactic bacterium
with a quasi-symmetric flagellum. It must be noted that only © was
not taken te be zero at t=0. This is because tﬂé range of values
of © in this coordinate system is the open interval (O,m. In
fact, O and n are singular poles of the & coordinate. In this
approximation, the contribution of a to ' is negligible and cne

has that O'x> w - 7.

Civd) I« a .
One proceeds in a way similar to that of the preceding limit
case. Then, one considers the angular velocity @ as a function of

f# and expands it in first order in

26

P 27>

6 = 6C3=00 + 3

From €21 cne cobtains
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t .
& ~ 3 n‘.n[ 6, - o J at’ sinCot®+ yCt* ;=000 ]
=)

- a sinfwt + yd (e

The first term in Eq. (28> acts as a small perturbing, time
dependent factor because the sine is bounded and # « a. In this
case there is no U-turn because the argument of the sine in the
first term of .the above equation is no longer the same as Lhe
angle € in which time diferentiation is taken. This case
corresponds to a magnetotactic bacterium with a very short

flagellum in a very small magnelic field.

4) Aplications.

-

Samples of magnetotactic bacterium were collected in the
interface water—sediment in a costal brackish water lagoon. The
samples were maintened by two weeks in laboratory without any
chemical enrichment. To optical microscopy observation a drop of
water with sediment was placed on the microscope. A coverslip was
used to ensure good focus condition. A pair of coils adapted to
the microscope furnished a homogenecus and stable magnetic field.
Residual fields, as gecmagnetic field or induced fields in the
microscope, were not compensated because this does not ialta'.-r'
escential results if the ceoils are well constructed and well
adapted. Dark field jlumination was used to obtain the bacterium
track on the film emulsion.

Experimental tracks obtained by low-exposure dark fleld

optical microphotography technique give the projection of tLhe
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bacterium trajectory on the film enmulsion plane, which |is
associated to the yz and xz planes (Fig., 2).

Theoretical parameters are connected to experimental
observation. Electron scanning or transmission microscopy together
with high resclution optic;l microscopy allows to estimate the
bacterium radius R. U-turn analysis allows to obtain a mean value
for the cell magnetic moment. This is achieved by means of formula
(230 where, in addition, two more parameters are needed, namely,
the applied field and the migration velocity. The viscosity, n,
has value 0.01 Peolse, that is, the water viscosity. The‘mdgration
velocity that enters in formula (23) is the projection of the
instantaneocus velocity along the unperturbed trajectory given by
the Bean model, which in the model described 1% Just v This
velocity is measured directly in the photography or using rececrded
video images. v, is obtained by measuring the meaﬁ angle Dbetween
the perturbed trajectory and the associated unperturbed path

(Fig. 2b>. Then v, is obtained by applying the formula

where ep is the pitch angle of the helical path and the bar over
the angle indicates a mean value over tLhe measured angles. Since
v, is related to a by v, = (4/732aR, one obtains immediately that o
= 3 v tan®_ 7 4R.

L P

As we have showed in the last section, when t » tu the
magnitude of the angular frequency is the same as in regimen of

zero field. This fact allows a good estimation of *. This

frequency 1s associated to the number of wavelengths of tLhe
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helical path divided by the time of exposure If this is made for
the portion of the helical trajectory posterior to the U-turn, one
can use as an approximate formula for i' Eq. (14). Thus, the
angular velocity of rotation of the flagellum relative to the cell
body is

w=-y=cr® - a7 ¢30>

The parameters w and y cannot be obtained separatedly. However ,
any value can be atributed toc w and y if one mantains w - 7 fixed
and y < . The case w = ¥ is unstable and does not correspond Lo a
real and viable bacterium.

The equations of motion were integrated in a computer using a
fourth order Runge—Kuﬁta method. The parametlers Jéed were obtained
from experiment in the described way. Fig. 3 shows the projection
of the resulting 3d trajectory in the planes xy, yz, and xa2. It
must be noted that the trajectory obtained has a better alignment
with the applied field than that of the experimental trajectory
because in the equations of motioch no residual.field is taken into
account. The diameter of the U-turn is almost the same as'the
di ameter obtained from the photographic plate. Alsco the migration
velocity in this computer trajectory is in good agreement with the
observed one. The dashed curve in the yz plane is the associated
path obtained from the Bean model. Fig. 4 shows the behaviour with
time of tLhe three Euler angles (6, ¢, y). Fig. 4a is directly
associated with the way in which the cell magnetic moment aligns

with the field and one identifies explicitly the time t, As in

the yz plane in Fig. 3, the dashed curve in Fig. 4a is the
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behaviour of © with respect to time in the assoclated Bean model .

Fig. S shows the trajectory of the same bacterium in zero
field condition. The resulting helical motion of the center of
mass is modulated by another helical path with greater wavel ength,
A magnetic field considerably greater than the gecmagnetic field
breaks ihis modulation as is evidenced in Fig. 3. This strong
modul ation reflects the very high degree of asymmetiry of the
flagellum of the studied bacterium. This behaviour is typical in
all magnetotactic bacteria observed in our laboratory. As a became
small c;:mpared with o - y, the modulation decreases Iunt.il the
trajectory reaches the approximated shape of a cylindrical helix
(Fig. 8. This behaviour was predicted in the last section Climit
case Ciiid), ) ’l

Fig. 7 shows the trajectory of the same bacterium at the
presence of the local gecmagnetic field. In this case the
bacterium does not make any U-turn but the helical modulation is
distorted by the field. This behavicur corresponds to the one
predicted in the limit case Civd) in the last section. In fact, one
has in this case o/f? = 4 X 10'9. which is much less than unity.
This shows that flagellar asymmetries dominates. If cone considers
a transverse torque of about one tenth of the measured torgue one
obtains that, in the same interval of time, the bacterium begins

to make a U-turn (Fig. 8.
8) Conclusion,

We have described a mechanical ab inttie model for the motion

of a magnetotactic bacterium where a non-magnetoctactic one emerges
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as a particular case. This approach allows a description of
helical motion with six degrees of freedom. Previous works
(Crenshaw, 1880; 1890; 1862, a, b & c) assume helical motion as
given a priori and treat the kinematics of a microorganism using
the framework of differential geometry.

The model presented can help experimentalists to extract
parameters not directly accessible, as for example, the frequency
of flagellar rotation relative to the cell body, w - ¥, as well
the torques and forces involved in the bacterial motion. The model
alse allows to obtain informations on the Dbehaviour of
magnetotactic bacteria in fields of the order of the geomagnetic
field. In laboratory it is difficult to control such fields and
the model can elucidate questions related y? the biological
efficieﬁcy of magnetic response in microorganisms (lLins de Barros
& Esquivel, 1887). "

In the last section, we show that if the flagellum is
sufficiently asymmetrical, },hat is, if the flagellar bundle doces
not have an integer number of wavelengths, magnetotactic bacterium
does not make a U~turn in low magnetic fields; Otherwise, 1f the
degree of asymmetry is low, the magnetotactic bacterium performs a
U-turn. The parameters obtained for the bacteria analyzed in
laboratory conditions shows that these bacteria does not perform
U-turn in the local geomagnetic field. This can be asscociated to
adaptative factors in magnetotaxis. The geomagnetic field orients
the cell but not limit the motion allowing to the bacterium to
swim in any direction. Magnetotaxis can be related to the
reduction of possibilities in the the motiocn direction when the

field is present: if the magnetotactic interaction dominates the
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flagellar action, the average motion is nearly constrained to one
direction allowing a faster migration velocity but, a bacterium
strongly constrained to the magnetic field line direction swims in
a narrower reglon. This reduce the possibilities to find
nutrients, On the other hand, asymmetrical flagellum introduces a
disturbance in the movement and allows the cell to swim in any
direction and to search nutrients more efficiently. In this sense
asymmetrical flagellum can constitute a bioleogical advantage to
magnetotactic bacterium. Early data from electron microscopy CLins
de Barros et al., 19902, both scanning and transmission, reveals
that, in fact, some magnetotactic bacteria have a flagellum that
typically possesses a shape of a half wavelen,'g(th helix with an
extension of about one body length. It s pessible th#t a
flagellum of this type has been developed to compénsate the excess
of bicomineralization of magnetic material, aveoiding, in this way,
that the biological motion of the magnetotactic bacterium of being
too much constrained to the geomagnetic field line. However,
experiméntal observations of others species of magnetotactic
microorganisms show that some cells are expected to make a U-turn

in the geomagnetic fleld.
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In this appendix we discuss the technique of wvariation of
parameters used in the discussions of the limit cases Ciidd) and

Civd. This technique is legitimated by the following theorem

CArncld, 1973D.

-

Theorem. If v = e, %, € is a vector Field depending
differentiably on a parameler £ Cas well as on t and X>, then the

value th) of the solution of the equation
X = VCt, X. € CA1D

satisfying the initial condition fCteD = §n depen?s differentiably

on t , % s t and =&£.
Q a

Let us apply the above theorem by treating perturbatively
equation CAlD) with respect Lo the parameter &.
If' £ is a small parameter, one can write that

VEY + eV + 0XeD CAZD

By the above theorem, the solution with fixed initial condition

can be written in the form
XCed =X Ced + & FCUO 4 oc e CADD

where §°Ct) is the solution of the unperturbed equation
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% = V%, O CA4LD

and yCtd> is the derivative of the solution with respect to the

parameter £ at £ = O,
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LEGENDS OF FIGURES.

Figure 1: The bacterium with a spherical cell body. We use
two reference frames: one is defined by the set of orthogonal axes
{xa. X,» xs} in which the center of mass is at rest; the other
reference frame is specified by the set of axes {(x, vy, 2> where
translation of the center of mass is taken into account.

Figure 2: Cad Photografic plate obtained from dark field high
resolution optical microscopy showing the track of a magnetotactic
bacterium performing a U-turn. (b One of the tracks translated
and better defined. The m;a_n ep angle measurgd in this track
allows an indirect estimation of a and w - 7. Tﬂé applied field is
Bx2.5 G. The experimental parameters obtained directly are R=1.2
Hm, L=2% um, tu=0.4 sec., m=2.8 emu, vL=125 umssec., Q'=220
radssec. For this bacterium, a=133.64 radssec and w - p=178
rad- sec. The time of exposure is 1.6 sec. Bar=30 um.

Figure 3: Computer trajectories. The pa_ramet.ers are taken
from data of Fig. 2. The dashed curve represents the unpertﬁrbed
trajectory of the Bean model.

Figure 4: The behaviour with time of the Euler angles (&, ¢,
¥). The dashed curve in the graph & x t represents the behaviour
given by the Bean model.

Figure 5: Computer trajectories made with the same parameters
as used in Fig. 3 , except that the bacterium is now in zero
magnetic field.

Figure 6: Computer trajectories of a bacterium in zero

magnetic field with a small a. The paramelers are the same as in
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Fig. 3, except that a is one tenth of the value used there and
i=0. The trajectory obtained is roughly a cylindrical helix. Only
the planes yz and xy are showed.

Figure 7: Computer trajectories made with the same parametlers
as used in Fig. 3, except that the bacterium is in the local
geomagnetic field (0.25 G in Rio de Janeirec, Brazild. For these
parameters there is no U-turn.

Figure 8: Computer trajectory in the yz plane where one uses
the same parameters as in Fig. 7, except for the value of a which
is taken as one tenth of the value used there. The time of
integration is the same used in Fig. 7 for better comparison; We
note that, in the same interval of time, the bacterium begins to
perform a U-turn. The oscillatory behaviour of ' the path is not

much visible due to smaliness of a and the scale utilized.
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FIGURE 1
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FIGURE 2b
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