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Abstract. Convex cones (Definitions 2 and 3) and convex sets (Definition 20)
are introduced without assuming they are vectorial, that is they are convex
subcones and convex subsets of real vector spaces. The set of all nonvoid convex
subsets of a convex set is a convex set, and the set of all nonvoid convex subsets
of a convex cone is a convex cone (Definition 24). A convex cone is vectorial
/if and only if it satisfies the cancellation rule for convex cones (Proposition
10). A convex set is vectorial if and only if it satisfies the cancellation rule
for convex sets (Proposition 34). Every convex set is a convex subset of some
convex cone (Proposition 31). Convex cones with constant multiplication are
simple instances (Proposition 18). Every convex cone whose pawer is strictly less
than the power of the continuum has a constant multiplication (Proposition 40).
Every convex set whose power is strictly less than the power of the continuum has
a unique convex cone structure with constant multiplication defining its convex
set structure (Proposition 41). There are equivalent conditions for a convex set
to satisfy the cancellation rule for convex sets (Proposition 44). Linear convex
sets are easily characterized (Proposition 46). For convex sets satisfying the
one dimensional injection rule, there is a smallest convex set failing to satisfy
the cancellation rule for convex sets (Proposition 48). Every convex cone is the
image by a surjective convex cone map of a vectorial convex cone, and every
convex set is the image by a surjective convex set map of a vectorial convex set
(Proposition 35). Associated with any convex cone, there is a largest vectorial
convex cone (Propositions 13 and 10). Associated with any convex set, there is
a largest vectorial convex set (Proposition 42).
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Notation 1. N is the set of all positive integers, N* is the set of all strictly
positive integers, R is the set of all real numbers, R4 is the set of all positive
real numbers, R} is the set of all strictly positive real numbers, | is the closed
interval in R of extremities 0,1, and J is the open interval in R of extremities
0,1.

DEFINITION 2. A convez cone is a set that either is empty, or else in which we

are given maps (2,,22) ECxCr— 1 +22 € Cand (L, z) ERI X C— Az €C
such that z1+z2 = 22+ 13, (21 +z§)+x3 = 14+(za+13), M(21422) = Az14+Azg,
(Mt + d2)z = AT + A2z, M(Aez) = (MA2)z,1z = z for 23, 22,23 € C,
MALA2 €RL. IFn €N, Ay, 0 €ERy, 1,02, € C, but some A; > 0,
i=1,...,n, wedefine \jz1 4 - -+ AnTn = Ai, 23, + -+ i, i, wherek =1,...,n
and §; < --- < i; denote the values of i = 1,...n such that A; > 0. A convez
subcone of C is a subset D of C such that xy,z2 € D imply z; + z2 € D, and
A €R%, z € D imply Az € D. Then D is a convex cone in a natural way. An
intersection of convex subcones of a convex cone C is a convex subcone of C.
A subset G of a convex cone C generates a convex subcone of C, namely the
intersection of all convex subcones of C' containing G, alternatively the set of all
A1zy + -+ Apzy forn € N*%, Mg, ..., A5 €RYS, 31,...;2:,; € G. If C is a convex
cone, n € N*, Aj,..., A € Ry, but some A; > 0,i=1,...,n,X;,..., X5 CC,
we define My X1 4+ A Xn = {MZ1 4+ ApZn; 71 € Xy,...,24 € X,}. We
say that f : C — D is a convez cone map between the convex cones C and D
when f(z) + T2) = f(z1) + f(z2) and f(Az) = Af(z) for A €RY, x1,22,2 € C.
If X is a convex subcone of C, then f(X) is a convex subcone of D, in particular
F(C) is a convex subcone of D. IfY is a convex subcone of D, then f~}(Y) is a
convex subcone of C. If { is moreover injective, it is a convez cone isomorphism.

A cartesian product of convex cones is a convex cone.

DEFINITION 3. A convez cone with zero is a convex cone C in which there is a
necessarily unique zero 0 € C such that z + 0 = z for all z € C. It follows that
A0 =0 for A € R}. If we extend (), z) € R:_XCH MM eCto(\z)ERy xCwrr
Az € C by defining 0z = 0 for z € C, the rules of Definition 1 remain true if R}
is replaced by R,.. The definition of \yzy + -+ + Axz, we have in Definition 1
coincides with the value it has now, and 0zy + --- + 0z, = 0 for z;,...,2a € C.
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A convez subcone with zero of C is a subset D of C such that z,,2z, € D imply
1tz €D, €Ry,z€Dimplydr € D,and0 € D. Then D is a convex
cone with zero in a natural way. An intersection of convex subcones with zero
of a convex cone with zero C is a convex subcone with zero of C. A subset G of
a convex cone with zero C generates a convex subcone with zero of C, namely
the intersection of all convex subcones with zero of C containing G, alternatively
the set of all \yzy + -+ + Aazp forn € N*, Ay,..., A € Ry, 21,...,2a € G.
If C is a convex cone with zero, n € N*, Ay,..., A € Ry, Xy,...,Xn C C, we
define 1 Xy 4+ -+« + daXn = {Mz1 + - -+ AnZa; 21 € Xy,...,20 € Xn}. We
say that f : C — D is a convez cone with zero map between the convex cones
with zero C and D when f(z: + 23) = f(z1) + f(z2), and f(Az) = Af(z) for
A€ Ry, 21,72,z € C. Then f(0) = 0. If X is a convex subcone with zero of
C, then f(X) is a convex subcone with zero of D, in particular f(C) is a convex
subcone with zero of D. IfY is a convex subcone with zero of D, then YY) is
a convex subcone with zero of C, in particular f~1(0) is a convex subcone with
zero of C. If f is moreover injective, it is a convez cone with zero isomorphism,

A cartesian product of convex cones with zero is a convex cone with zero.

Remark 4. Let C be a convex cone without zero. We get a convex cone with
zero Cp in a natural way as follows. Fix a point 0 ¢ C. Set Cy = C U {0}.
Extend (21,72) € Cx C ¥ 214+ 22 € C, (\,2) € Ri xXC - Az € C to
(1,22) € Cox Cp 21 + 72 € Gy, (\,2) ER, X Cg = Az € Cp by defining
0+40=0,z4+0=04+2=12,00=0,0z=0,00=0for A € R, z € C. Then

Co is a convex cone with zero containing C as a convex subcone.

Example 5. A real vector space E is a convex cone with zero. A convex subcone
C of E is a convex cone. If, moreover, 0 € C, then C is a convex cone with zero.
In a real vector space E, the vector subspace of E generated by a convex subcone
C # ¢ is C—C. Hence E is its vector subspace generated by C when E = C—C.

DEFINITION 6. Let C # ¢ be a convex cone, E and F be real vector spaces,
f:C — Eandg:C — F be convex cone maps, E = f(C) — f(C) and
F = g(C)— g(C). We say that f is larger than g and write f > g when there
is a linear map h : E — F such that hf = g. Then k is unique and surjective.
We say that f and g are equivalent and write f~gwhen f>g,92> f This
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happens when f > g and h is bijective.

PROPOSITION 7. Let C # ¢ be a convex cone. There are a real vector space
E and a convex cone map f : C — E such that E = f(C) — f(C), and f is
larger than any convex cone g : C — F, where F is a real vector space such that

F = g(C) - g(C). Moreover, f : C — E is essentially unique in the sense that,

[ ——

if f; : C — Ei(i = 1,2) are two choices for f : C — E, then f; ~ f.

PROOF: We may assume that C has a zero (Remark 4). Consider the convex
cone with zero C' x C, and the equivalence relation on it defined by (f),z;) ~
(t2,22) when t5,21,t2,22 € C and t; + 72 + u = 2 + 2, + u for some u € C.
Let E be the quotient set of C x C, and v : C x C — E be the surjective
quotient map. Then E is a convex cone in a unique way so that = is a convex
cone map. Actually E is a real vector space because its additive nonvoid is an
additive group. Indeed n(z,z) is the zero of E, and =(t, ) has the symmetric
~n(t,z) = n(z,t) for t,z € C. Define f : C — E by f(z) = «{(z,0) for z € C.
Then f is a convex cone map, and E = f(C)— f(C). Let g : C — F be a convex
cone map, where F is a real vector space such that F = ¢(C) — g(C). Define the
map h : E — F by h[f(z)— f(t)] = g(z)~g(t) for t,z € C. It is well defined since
f(z1) = f(t1) = f(x2)~ f(22) for t1, 21,15, 22 € C implies f(t; +13) = f(ta +11),
hence (t; + 22,0) ~ (2 + 2;,0), and #; + 23 + v = ¢, + 1, + u for some u € C.
Thus g(t; + 22 + u) = g(tz + 2, + u) and g(z1) — g(t;) = g(z2) — g(t2). Then
h is the unique linear map such that hf = g. It is surjective. Thus f > g. The
essential uniqueness for f : C -+ E is clear. ||

DEFINITION 8. A convex cone s said to be vectorial when it is a convex subcone

of some real vector space.

DEFINITION 9. A convex cone C satisfies the cancellation rule for convez cones

(CRCC) when z), 25,23 € C, 2y + 22 = 21 + 23 imply 2z = z3.

PRrOPOSITION 10. Let C # ¢ be a convex cone. If E is a real vector space, and
the convex cone map f : C — E is injective, then C satisfies the cancellation
rule for convex cones. Conversely, if C satisfies this rule, then f : C — E of
Proposition 7 is injective. Hence a convex cone is vectorial if and only if it
satisfies the cancellation rule for convex cones.
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PRoOF: Consider the first assertion is the statement. Then t 4+ u = z + u for
t,z,u € C imply f(t) + f(u) = f(z) + f(u), hence f(t) = f(z) and t = z. Thus
the cancellation rule for convex cones holds in C. Consider the second assertion
in the statement. Use notation of proof of Proposxtlon 7. By assuming that C
has a zero (Remark 4), then f(t) = f(z) for ¢,z € C imply (t,0) ~ (z,0), hence
t+u = z+u for some u € C,and t = x. Thus f is injective. The third assertion

in the statement is then clear. i

PROPOSITION 11. Let C # ¢ be a convex cone, E and F be real vector spaces,
f:C — E and g : C — F be injective convex cone maps, E = f(C)— f(C) and
F = g(C) - g(C). There is 2 unique linear map h : E — F such that hf = g.
Moreover, k is bijective.

PROOF: Define h : E — F by h[f(z) — f(t)] = g(z) —g(t) for t,z € C. It
is well defined since f(z1) — f(t1) = f(z2) — f(t2) for t1,21,82,22 € C imply
S(t1+22) = f(t2 +21), hence 1 + 22 = t2+ 21 and g(x1)— g(t1) = g(x2) —g(t2)-
Moreover, h is the unique linear map such that hf == ¢. By interchanging the
roles of f and ¢ we see that A is bijective. |

Definition 6, Propositions 7 and 10 have analogous forms for convex cones
satisfying the cancellation rule for convex cones in place of rea! vector spaces, as

follows.

DEFINITION 12. Let C # ¢ be a convex cone, E and F be convex cones satisfying
the cancellation rule for convex cones, f : C — E and g : C — F be surjective
convex cone maps. We say that f is larger than ¢ and write f > g when there
isamap h: E — F such that hf = g. Then h is a convex cone map, unique
and surjective. We say that f and g are equivalent and write f ~ g when f 2 g,
g 2 f. This happens when f > g and h is bijective.

PROPOSITION 13. Let C # ¢ be a convex cone. There are 2 convex cone
satisfying the cancellation rule E and a surjective convex cone map f : C — E,
such that f is larger than any surjective convex cone map g : C — F, where
F is a convex cone satisfying the cancellation rule for convex cones. Moreover,
f : C — E is essentially unique in the sense that, if f; : C — Ei(i = 1,2) are
two choices for f : C.—' E, then f; ~ fs.
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PROOF: Consider the equivalence relation on C defined byt ~ z when ¢,z € C
and t4+u = 4+ u for some u € C. Let E be the quotient set of C, and
f : C — E be the surjective quotient map. Then F is a convex cone in & unique
way s0 that f is a convex cone map. Actually E satisfies the cancellation rule
for convex cones. Indeed, if f(t) + f(u) = f(z) + f(u) for t,z,u € C, then
Jt+u)=f(z+uv)andt+u+v=2+u+vfor somev € C. Thereforet ~ z,
and f(t) = f(z) as wanted. Let g : C — F be & surjective convex cone map,
where F is a convex cone satisfying the cancellation rule for convex cones. Define
'k : E = F by h[f(z)] = g(z) for z € C. 1t is well defined since f(z1) = f(z2)
for zy,22 € C imply z; ~ z3, hence z; 4+ ¥ = z; + u for some u € C, hence
g(z1) + g(u) = g(z2) + g(u) and g(z,) = ¢(z2). Then k is the unique map
satisfying Af = ¢. It is a surjective convex cone map. Thus f > g. The essential

uniqueness for h : C — FE is clear. §

PROPOSITION 14, Let C # ¢ be a convex cone. If E is a convex cone satisfying
the cancellation rule for convex cones, and the convex conemap f : C — E is
injective, then C satisfies the cancellation rule for convex cones. Conversely, if
C satisfies this rule, then f : C — E of Proposition 13 is bijective.

Proor: Consider the first assertion in the statement. Thent +u = z + u for
t,z,u € C imply f(t) + f(u) = f(z) + f(u), hence f(t) = f(z) and t = z. Thus
the cancellation rule holds in C. Consider the second assertion in the statement.
Then t ~ z in the proof of Proposition 13 is the same ast = z. §

Remark 15. If we consider f : C — E of Proposition 7, then f : C — f(C)
is a convex cone map whose existence and essential uniqueness is asserted by
Proposition 13. Conversely, it is easy to see that Proposition 7 is implied by
Proposition 13.

PROPOSITION 16. Let C be a convex cone and = € C. Then either the map
A € Ry v Xz € C is injective, or else Az = z for all A € R} (constant

multiplication on z). The second alternative occurs if and only if x + 2 = .

PROOF: Consider the multiplicative subgroup G = {A € R}; Az =z} of R}. If
Mp €G,a,f € R}, a+ B =1, then (el + fu)r = z, hence ad + fu € G.
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Thus G is & convex subset of R}. It follows that either G = {1} or G = Rs,
proving the first part of the proposition. In fact, if G # {1} and A € G, ) # 1,
we may assume A > 1, for A < 1 implies 1/A € G, 1/ > 1. Thus A\ € G
and [1,A"] C G for n € N. It follows that [1, +00[C G, hence ]0, 1] C G. Thus
G = R}. The second alternative occurs if and only if 2z = z, by the first part
of the proposition, that isz 4+ z = z. §

PROPOSITION 17. Let C be a convex cone and 21,232,823 € C. If Azy + 25 =
Azy 4 z3 for some X € R, this equality holds for all A € R;.

PROOF: From Az; + 2, = Azy 4+ z3 we get Axy + 22, = Az; + 22 + 23 and
ATy + 22 4+ 23 = Az; + 273, hence Az; + 272 = Az + 273 and (A 2z + 22 =
(A/2)z1 + 23. By induction we have (A/2°)z; + 2, = (A/2")z1 + 23 for n € N.
Given any u € R}, choose n € N so that A/2" < p. Then (- A/2™)z; +
(A/27)z1 + 22 = (5 — A[2)zy + (A/27)z1 + 23, that is pzy + 22 = pzy + 23.

PROPOSITION 18. (1) Let C # ¢ be an ordered set that is an inflattice. Define
Z1+22 = T1Az; for z1,27 € C. Then C is an associative, commutative, additive
nonvoid, z + x = z, and z; < z, if and only if z; + 23 = z, for z,z1,22 € C.
Conversely, let C # ¢ be an associative, commutative, additive nonvoid such that
z+z =z forz € C. We obtain an orderon C by z; < z; when 1, + 15 = z; for
Zy1,z3 € C, and C is an inflattice since 2, +22 = 23 Az; for 7;,2, € C. Moreover,
C has a zero as an additive nonvoid if and only if C has a largest element as an
ordered set, this zero and largest element being identical. (2) Let C # ¢ be an
associative, commutative, additive nonvoid. Define the constant multiplication
(Mz)€ER, xC v+ Az =z € C. Then C is a convex cone if and onlyifr+z =12z
for z € C. If C has a zero 0 as an additive nonvoid, we complete the definition
of the trivial multiplication by 0z = 0 for z € C. Then C is a convex cone with
zero.

PROOF: (1) is clear. Concerning (2), we remark only that the convex cone
condition (A3 + A2)z = Ayz + Aoz for Ag, s € Ry, z € C, is equivalent to
z = z + z for z € C under the circumstances. J

Example 19. Let C be an associative, commutative, additive nonvoid satisfying
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z+z = z for z € C, having at least two elements. Then C is a convex cone with
constant multiplication not satisfying the cancellation rule for convex cones. In
fact, we can find 23,2, € C, 2, # 25,2, + 22 = x2, and then z, 4 20 = 23 + z,

does not imply zy = z3.

DEFINITION 20. A convez set X jis a set that either is empty, or else in
which we are given a map that to every n € N AL eebdn €, A + -+ +
An =1, 23,...,2n € X, associates a point of X denoted by \jzy 4+ --- +
AnZn = 3 cicq AiTi, called 8 convez combination of 71,...,2, with coefli-
cients ,\1,...:.\—,,, 50 that: (1) Commutativity. We bave 3, cic, Ao(i)To(i) =
Elgisn Aiz; for any permutation o of {1,...,n}. (2) Associativi-ty. We have

> P:‘( > .\.-,-a:,—,-) = > ujps)sy;

1<5<n 1<i<m; 1<i<m;
I<j<n

foreveryneN”,m,'EN'forj=1,I..._,n,'\.-_,-EJfori:l,...,m,-,j:1,...,n
such that \yj + -+ + Ap;; = 1 for j = 1,...,n, uji € Jfor j = 1,...,n,
mit-tpa=lLzi;€X fori=1,...,mj,j=1,...,n, where we note that

> Njui=1.

1<i<m;
I<j<n

(3) Distributivity. We have 2+ ---+ Apz = z forn € N* A,elydn €0,
M+ +d=1z€ X, Fn € N+, AyeesAdn EL 442, =1,
Z1,...,Zn € X, we define \jz; + -+ + Az, = AiyZiy + o+ + Xi, x4, where
k=1,...,nand 1) < :-- < i} denote the values of i = 1,...,n such that
Ai > 0. The above conditions (1), (2), (3) remain true if we replace J by .
A convez subset of X is a subset Y of X such that n € N*, Alyeeesdn € J,
Mt tAa=Lz, 2. €Y, imply Mizy + -+ ApZn €Y. Then Y is 2
convex set in & natural way. An intersection of convex subsets of a convex set
X is a convex subset of X. A subset G of a convex set X generates a convex
subset of X called the convez hull of G in X, namely the intersection of all
convex subsets of X containing G, alternatively the set of all \yzy +--- + AnZn
forn € N*, Ay,..., 2, € J, A+t Aa=1,2,...,24 €G. X is a convex
set, n € N*, Ap,...,Adn €L A+ -+ 2, =1, X3,...,Xn C X, we define
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MXy oo+ AnXn = { Mz + 04 AaZa; 71 € X),..., %0 € X} C X. We say
that f : X — Y is a convez set ﬁzap between the convex sets X and Y when
fazi+ o4 dazn) = M f(1) + - + Aaf(zn) forn € N*, Xy,-+- Mg € U,
MMt +An=1,21,...,24 € X. KV is a convex subset of X, then f(V)
is a convex subset of Y, in particular f(X) is & convex subset of Y. EW is a
convex subset of Y, then f~}(W) is a convex subset of X, in particular f~1(y)
is 8 convex subset of X for y € Y. If f is moreover injective, it is 2 convez set
ssomorphism. A cartesian product of convex sets is a convex set. A family of
elements (z;)ics of a convex set X is convezily independent when z; does not
belong to the convex hull of the set {zi;i € I,i # j} for every j € I; then

t € I z; € X is injective. Otherwise, the family is convezily dependent.

Example 21. A convex cone is a convex set in a natural way. A convex cone
map is a convex set map. A convex subset of a convex cone is a convex set.
The convex subcone of a convex cone C generated by a convex subset X of C

is R1.X. If C has a zero, the convex subcone with zero generated by a convex
subset X # ¢ of C is Ry X.

Notation 22. We define
A1Zy + o+ AnZg

=mTL+c 4 finzn

L3I RREE D W
forn € N*, Aj,oe0 0 €Ry, M 4420 > 0, 29,...,2, € X and g; =
Aif(Ar4---+A3) fori =1,...,n. In a convex cone, this notation has a meaning

that agrees with the one we are giving now.

Remark 23. Let C # ¢ be a convex cone. We may ask whether the convex set
structure of C' determines its convex cone structure. The answer is easily seen to
be negative. If C has a constant multiplication, the answer is affirmative since
Zi+z2=(1-Azy +AzgforAe J, z;,z, € C.

DEFINITION 24. The set CS(X) of all nonvoid convex subsets of a convex set
X is a convex set with respect to the definition of 3 Xy + -+ + A X, € CS(X)
wegaveforn € N*, Ay ...,0a € J, A + -+ X, = 1,X1,...,X, € CS(X)
(see Definition 20). We have the injective map x € X v+ {z} € CS(X). The
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set CS(C) of all nonvoid convex subsets of a convex cone C is a convex cone
with respect to the definitions of X, 4+ X2 € CS(C) and AX € CS(C) we gave
for A € R}, X, X3, X € CS(C) (see Definition 2). The convex set structure we
defined on CS(C) coincides with the one we get from its convex cone structure.

PROPOSITION 25. (1) A subset Y of a convex set X is a convex subset of
X ifandonly f 1 —MNz1 4+ Az € Yor i e J, o,z €Y. Q)X
and Y are convex sets, then f : X — Y is a convex set map if and only if
Fl(1 = Nz1 + Aza) = (1 = X)f(x1) + Af(zz) for A € J, 21,32 € X. (3) The
knowledge of all convex combinations (1 — A)zy + Azz for A € J, 1,22 € X

determines the convex set structure of a convex set X.
The proof is straightforward.

PROPOSITION 26. Let X be a set in which to every A € J, 71,22 € X we
associate & point represented by (1 — A)z; + Az; € X. There is a necessarily
unique convex set structure on X defining these convex combinations of any two
points if and only if: (1) Commutativity. We have Az2+(1-2)z; = (1-X)z1+Az2
for A € J, z1,z7 € X. Associativity. We have

(1= 22)[(1 — Ap)za + Miza] + Azzs

=(1 = A1)(1 = Ag)zs + Pl = A2) + Ag) A1 = Az)zz + dozs

A(l=2g)+ A

for A1, A2 € J, 23,232,235 € X. (3) Distributivity. We have (1 — A)z + Az = z for
Aed, zeX.

PROOF: Necessity is clear. Uniqueness follows from Proposition 25, (3). Let us
prove sufficiency. Set C' = R} X X. Define addition and multiplication by

A1Z1 + Aazs

(:\1,31)-1-(4\2,32)_ = ('\l + Az, A g

) sd2(A1,21) = (M1 A2, 21)

for A1,X2 € R}, 73,z € X. We claim that C is a convex cone. Addition
is commutative and associative because of commutativity (1) and associativity
(2) in the statement. Distributivity of product on the left is true because of

distributivity (3) in the statement. The remaining conditions for C to be a convex
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cone are clear. We omit the computation. Consider f:2 € X ~ (1,2) € C. It
is injective, and f(X) is a convex subset of C, by Proposition 25, (1). Use then
the convex set structure on f(X) induced by the convex cone structure of C and
the bijection f : X e f(X) to obtain a convex set structure on X defining the
given convex combinations of any two points of X. §§

PROPOSITION 27. (1) Let X # ¢ be a convex set, and Y # ¢ be a set in which
we are given a map that toeveryn € N*, Ay,..., Ay € LA 4+ -4 A = 1,
Y1,--..¥n € Y associates a point of Y represented by \iyy + -+ 4+ Apyn. Let
- J: X =Y be a surjective map such that f(A1z; +- o+ AnZn) = A1 f(z1)+-- -+
Anf(zn) forn € N*, Ay, A €S M4+ 4 Ap=1,74,...,20 € X. There is
a unique convex set structure on Y defining those given convex combinations of
any n points of Y, equivalently for which f is a convex set map. (2) Let X # ¢
be a convex set, and Y # ¢ be a set in which we are given 2 map that to every
A € J,y1,12 €Y associates a point of Y represented by (1 — M+ Aye. Let f:
X — Y be a surjective map such that f{(1— )z 4 Aza] = (1= A)f(z1)+ Af(z2)
for A€ J, 21,27 € X. Thereis a unique convex set structure on Y defining
those given convex combinations of any two points of Y, equivalently for which

f is a convex set map.

PROOF: Part (1) is clear. It simply means that conditions (1), (2), (3) of
Definition 20 that are satisfied by X imply the same conditions for Y. As
to part (2), uniqueness follows from Proposition 25, (3). To get existence, use
Proposition 26. Conditions (1), (2), (3) that Y needs to satisfy follow from
similar conditions satisfied by X. Then f is a convex set map by Proposition 25,
(2). Conversely, if f is a convex set map for a convex set structure on Y, this

structure defines those given convex combinations of any two points of Y. §

PROPOSITION 28. Let X # ¢ be a convex set, Y £ ¢ beasetand f: X = Y
be a surjective map. There is a necessarily unique convex set structure on Y for
which f is a convex set map if and only if the following equivalent conditions
bold: (1) Hfn € N*, Aj,...,da € I, My 44+ Xn = Ly,...,yn € Y, then
f(Mz1 4+ Aazn) depends only on Ay,..., An, 1, - - - , Yn, Dot on the choice of
T1y...42n € X such that f(z))=y1,...,f(zu) =yn- (2) Hr€ I, Yy, €Y,
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then f[(1-A)z, + Az2] depends only on A, V1,y2, not on the choiceof z;,2, € X
such that f(z1) =y, f(z2) = 1.

PROOF: Necessity in (1) is seen as follows. If the claimed convex set structure
existson Y, then (1) holds because F(Mzi+ -+ An2) = Ajy1 4+ -+ Anyy in the
notation of (1) of the proposition. Conversely, let (1) hold. Uniqueness follows
from (1), since once Ay,...,Aq,m,... »Yn 8re given, then Mgy + -+ + Ayn =
J(Mz; + - + Ayz,) whatever T1y--.y%n € X we choose so that f(z,) =
Vis--+, f(Zn) = ya. Existence results from (1) in the following way. Once
ALee3An, ¥, ..., Va are given, we define Myt FAnyn = f(Ayz 4 *+AnZyn)
whatever z,,...,z, we choose so that H(z1)=w1,..., f(zn) = yn. Then we have
Fazi 44 Aaz,) = Mf(z)+---+ Anf(zy). Since conditions (1), (2), (3) of
Definition 20 hold for X, they also hold for Y. Thus we get a convex set structure
on Y for which f is a convex set map. Clearly (1) implies (2). Actually (2) implies
existence and (1). By (2) we define (I-Mm+rpforded, y,peY by -
setting (1 — Ay + Ayz = f[(1 — M)z + Az,] whatever 71,22 we choose so that
f(z1) = w1, f(22) = y2. Then f[(1 - A)z1 +Az3] = (1 = A)f(z1) + Af(z2). Since
conditions (1), (2), (3) of Proposition 26 are satisfed by X, they are also satisfied
by Y. Proposition 26 implies that there is a (unique) convex set structure on Y
defining these convex combinations of any two points of Y. From Proposition
25, (2) it follows that f is a convex set map. Hence (1) holds, as we saw in the
necessity part. §

DEFINITION 29. An equivalence relation ¢ ~ z(t,z € X) on a nonvoid convex
set X is said to be compatible with the convex set structure of X when it
satisfies the following condition: if n € NSAL oA €Ed, A oo A, = 1,
tyooostn, T1,..,20 € X, £ ~ Zls.ev9tn ~ 24, then Mty + --- 4+ Aot ~
A1z + -+ + Apzn. This is equivalent to saying that, if n € N*, A;,..., A, € J,
M+t An=1,4,,...,A, are equivalence classes, then \ A +--- + A, A, is
contained in an equivalence class. An alternative way of defining compatibility
is as follows: if A € J, t),13,7,,2, € X, ~ 25,1 ~ z3, then (1 ~ Aty + Atp ~
(1~A)z1+Az2. This is equivalent to saying that, if A € J, A, A; are equivalence
classes, then (1 — A)A; + A\A, is contained in an equivalence class. Every
equivalence class A for a compatible equivalence relation on X is a convex subset
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of X. Infact, if n € N*, Ay,...,An € J, Mt et dn=1,21,...,24 € 4, fix any
T€Atogetz; ~z,...,2, ~ z, hence Ay 1, +ertApza v T b F Az =2
and Ay z, +- 4+ Apza € A

PROPOSITION 30. Let X and Y be nonvoid convex sets,and f: X = Y bea
surjective convex set map. Then f defines an equivalence relation on X , whose -
equivalence classes are f~(y) fory € Y, which is compatible with the convex set
structure on X. Conversely, let us be given a compatible equivalence relation on
a convex set X # ¢. Call Y the quotient set of X and f:X - Y the quotient
map. There is one and only one way of making Y into a convex set so that f is a
convex set map, namely through the map that to every n € N* A1, A €,
A1 +--+ X, =1, and equivalence classes Ai,...,A,, associates the equivalence
class denoted by AnA; @ - ® A A, containing Ay Ay + -+ + A A,,.

PROOF: The direct part of the proposition is clear. Let us prove its converse
part. Uniqueness is seen as follows. Assume that there is a convex set structure
on Y so that f is a convex set map. If n € N*, Aoy An €9, My 4 - +
An =1, and A,,...,4, € Y are equivalence classes, let \A; @ -+ & A, 4,
be the corresponding convex combination in Y. For T € Ay,...,Z4 € A, we
have f(Ajzy + -+ + AnZTa) = MA@ - ® M\ A, and so MZ1 4+ o ApZ, €
AA; ® - @ Apdn and MA; + -+ + A4, C AMA) & --- @ A, A,. This proves
that \A; & --- @ A, 4, is the necessarily unique equivalence class containing
MA; +--- + ApA,. Let us prove existence. For every n € N*, Ay,...,A, € J,
M+ A,=1,4,,... A, ¢ Y,let \;4,@---@® A, A,, denote the equivalence
class in X containing Ay 4; +---+ A, 4,. Then A1z 4+ Ap2,) = AMf(z)®
@ Aaf(zn)forn € N* Ay,... 0 € JSAM+--+dhi=1,2,...,2, € X. By
Proposition 27, (1), there is a unique convex set structure on Y defining those
given convex combinations of any n points of Y, equivalently for which f is a

convex set map. |

PROPOSITION 31. (1) Let X 3 ¢ be & convex set. Define C = R} xX. Introduce
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addition and multiplication by

_ A1zy 4 Aoz
a2+ () = (33 43y, 2224 2070
A2(A1,23) = (Mg, 21)

for Ay, A2 € R},2,,22 € X. Then C becomes a convex cone called the convez
cone freely generated by X. Themap f:z € X (1,z) € C is a convex set

isomorphism. (2) Every convex set is a convex subset of some convex cone.

‘PROOF: Concerning (1), we see as in the proof of Proposition 26 that C is indeed

a convex cone, and that f is a convex set isomorphism. Then (2) follows from

(1). u

DEFINITION 32. A convex set is said to be vectorial when it is a convex subset
of some real vector space.

DEFINITION 33. A convex set X satisfies the cancelletion rule for convex sets
(CRCS) when A € J, x1,T2,23 € X, (1 - A)zl + Az = (1 - :\)31 + Az; imply

Ig == T3.

PROPOSITION 34. A convex set X is vectorial if and only if it satisfies the
cancellation rule for convex sets.

PROOF: Consider f : X — C as in Proposition 31, (1). We claim that C satisfies
the cancellation rule for convex cones if and only if X satisfies the cancellation
rule for convex sets. In fact, C satisfies the cancellation rule for convex cones
if and only if (A1, 21) + (A2, 22) = (M1, 21) + (A3, z3) implies (X2, z2) = (A3, 73),
where A1, 22,23 € R}, 21,272,235 € X, that is if and only if

A1Z1 + Agz2\ ATy + A3 T3

implies A3 = A3, 22 = z3, that isif and only if A; + Az = Ay + As, ﬁi-:—i—}:ﬁ =
Jftdaza imply Ay = Ay, 23 = 23, and finally if and only if Mpiddarz o
%ﬂ implies 2 = z3, which is the cancellation rule for convex sets by
setting A = A2 /(A1 + Az) to get that (1 — A)z; 4 Azz = (1 — A)z; + Az3 implies
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x3 = r3. This proves our claim. A real vector space satisfies the cancellation
rule for convex sets. Hence a vectorial convex set satisfies the cancellation rule
for convex sets. This proves necessity. To prove sufficiency, if X satisfies the
cancellation rule for convex sets, then C satisfies the cancellation rule for convex
cones, by preceding claim. Thus C is vectorial, by Proposition 10. Since the
convex set map f: X -+ C is injective, we see that X is vectorial. §

PROPOSITION 35. Every convex cone is the image by a surjective convex cone
map of a vectorial convex cone. Every convex set is the image by a surjective

convex set map of a vectorial convex set.

PROOF: Let C # ¢ be a convex cone, and G # ¢ be a subset of C that generates
C as a convex cone. Consider the real vector space E of all real functions on
G that vanish outside finite subsets of G. Let D be the convex subcone of E of
all « € E, o # 0, that are positive. Define f : D — C by f(z) = Da(g)g € C |
for @ € D, where summation is over the support of a. Then f is a surjective
convex cone map. This proves the first part. Let X # ¢ be a convex set, and
G # ¢ be a subset of X that generates X as a convex set. Consider E as before.
Let Y be the convex subset of E of all @ € E that are positive and satisfy
Ta(g) = 1, where summation is over the support of a. Define f: Y — X by
f(a) = Ta(g)g € X for @ € Y, where summation is over the support of a. Then
f is a surjective convex set map. This proves the second part. J

LEMMA 36. Let X be a convex set and 21,72,z € X. Then X;,.,(z) = {) €
(1 = A)x1 + Az = z} is an interval of 1. If z; # x,, then X,,.,(2,) is either
{0} or [0,1], and X, .,(z2) is either {1} or]0,1].

PROOF: X;,.,(z) is the inverse image of z by the convex set map A € | —
(1 — A)x;1 4+ Azz € X, hence it is a convex subset of {, that is an interval of
I. Since 0 € X.,;,(2:), then X, ,,(z1) is an interval of | to the right of 0.
We claim that there is no @ € J such that X,,,,(z;1) is either [0,6] or else
[0,68]. Assume that 6 exists. Let 0 < € < 8. Take A = 8 — € € X;,:,(71),

p=16€ X ¢,(22),v =0 —¢€ € X;,;,(21) in the following consequence from the
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associativity condition.

(*) (1 = v)[(1 = A)z1 + Aza] + v{(1 — p)z1 + pza] =
[ - N1 = ¥) + (1 - wwfz + DA~ v) + e .

The lefthand side of (#) is then z;. For the righthand side of (*) to be z;, it
is necessary that A(1 — v) + pv € X,;,;,(2)), hence A(1 — v) 4+ pv < 6 and so
(0—€)(1-0+¢€)+(0~¢€) <8. Letting ¢ — 0, we get 8(1 — 8) + 8 < 8, which
is impossible. This proves our assertion for X;, ;,(21). We get the assertion for
X.,z,(z2) from the one for X;,,,(z,) by interchanging =, and z; as well as )
and1-X\. §

PROPOSITION 37. Let X be a convex set and z,,22 € X. Then either the map
f:Ae€le (1 =Xz + Az2 € X is injective, or else its restriction to J is a
constant map.

PROOF: Assume that f is not injective. There is then z € X such that the
interval f~1(z) of | is neither void nor reduced to a single point. Call ag and o
the smallest and largest extremities of f~1(x) respectively, hence 0 € ap < a; £
1. We may assume z # 21,2z # z2. In fact, if z = z;, then we already know by
Lemma 36 that f~!(z;) must be [0, 1] because it is not {0}, hence f(}) = z,
for A € [0,1]; and likewise for £ = 3. Fix a €}ag,a;], hence a € f~3(z) and so
z=(1-a)y+az;. Wehave(1-A)z; + iz =(1-2N)z1 + A[(1 - z)z1 4 az;] =
(1 — aA)z; + (ar)zy for A € |. Note that 0 < & < 1, 0 £ ap/a < 1. Hence
agfa < A € 1imply ap < aX € a < a; and aX € f~I(z), that is z =
(1—ad)z; +(alr)z; and z = (1—-A)z; +Az. It follows that Jap/a1,1) C X:,=(2),
hence X;,:(x) =]0, 1] because z # z; and by Lemma 36. Thusz = (1-A)z;+ Az
for0< A<l Hencez=(1-A)n1+dz=(l—-al)z1 +(ad)z2 for 0 < A <1
imply z = (1 — p)z; + pz2 for 0 < 4 € a. Thus ]0,a] C f~(z) and ap = 0.
Likewise a; = 1. Thus ]0,1{C f~(z). B '

PROPOSITION 38. Let X bea convexset and zy,72,23 € X. H(1-2)zy+Az2 =
(1 — A)xy + Azs for some X € J, this equality holds for all A € J.

PROOF: The set A = {A € I;(1 ~ A)z; + Az2 = (1 — A)z; + Az3} is a convex
subset of | and it contains 0. Hence [0,A] CAif A € A. Let A € A,X > 0. Set
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B=2)/(1+X). Wehave 0 < A < pt < 1. We claim that u € A. In fact, let

1-2 A A
Then
— A Ta =
u‘1+ 1+A°2
1-A 2)

—1+'\[(1—¢\)x1 + Az3] + T = T3 A T35

hence u = (1—-p)z1 +p23. Likewise, u = (1—p)zy +pzs. Thus g € A as claimed.
By applying this claim repeatedly, we get that A, = 2"A/[1 + (2" ~ 1)A] € A for
n € N. Notice that A, — 1 as n — oo. Hence ) contains (0,1]. m

PROPOSITION 39. In a convex cone C # ¢ with constant multiplication, 1-
A)zy + Azp = 21 + x2 is independent of A € J for all z1,x3 € X, If a convex set
X # ¢ is a convex subset of a convex cone with constant multiplication, then
(1 — A)z; 4+ Az; is independent of X € J for all zy,z2 € X. Conversely, if a
convex set X # ¢ satisfies this condition, then X is a convex cone with constant
multiplication in a unique way.

PROOF: The first part is clear. It implies the second part. Let us check the
third part. Define z; + 22 = (1 ~ A)z; + Az, for z,,z, € X, where A € J. By
assumption, r; + 3 is independent of ). It is easy to check that this addition is
commutative and associative, and verifies z + r = z for z € X. If we introduce
constant multiplication on X, it becomes a convex cone, by Proposition 18, (2).
Uniqueness follows from Remark 23. |

PROPOSITION 40. In a set C whose power is strictly less than the power of
the continuum, every convex cone structure has a constant multiplication, and
Proposition 18, (2) applies.

PRoOOF: If x € C, the map ) € R} — Az € C cannot be injective. Hence it is a
constant map, by Proposition 16. §
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PROPOSITION 41. In a set X whose power is strictly less than the power of
the continuum, every convex set structure comes from a unique convex cone
structure with constant multiplication, and Proposition 18, (2) applies.

PROOF: f 71,73 € X, the map A € | = (1~ 1)z, + )z, € X cannot be injective.
Hence its restriction to J is a constant map, by Proposition 37. There remains
to apply the final part of Proposition 39.

PROPOSITION 42. Let X # ¢ be a convex set, and X* denote the vector space of
all convex set maps of X intoR. (1) X is vectorial if and only if X* is separating
on X. (2) There is a surjective convex set map f : X — Y, whereY is a vectorial
convex set, with the following property. For any surjective convex set map
g:X — Z, where Z is a vectorial convex set, there is a unique map h: Y — Z
such that hf = g, and h is necessarily a surjective convex set map. Moreover,
f : X —Y is essentially unique in the sense that, if f; : X — Yi(i = 1,2) are two
choices for f : X — Y, there is a unique map h : Y; — Y such that hfy = f,,
and h is necessarily a bijective convex set isomorphism.

PRrOOF: Consider the convex set map f : z € X + (¢(z))pex- € RX". (1) This
map is injective if and only if X* is separating on X. Hence X is vectorial if X* is
separating on X. Conversely, let X be vectorial, that is a convex subset of some
real vector space E. Call E* the vector space of all linear forms on E, which is
separating on E. The set of restrictions of E* to X is contained in X*. Hence X*
is separating on X. (2) Set Y = f(X) to obtain a convex subset of RX", hence
a vectorial convex set. Consider the surjective convex set map f: X — Y. Take
any surjective convex set map g : X — Z, where Z is a vectorial convex set. The
vector space Z* of all convex set maps of Z into R is separating on Z. We claim
~ that there is a map h : Y — Z such that hf = g, equivalently that z,,z, € X,
f(z1) = f(z2) imply g(z1) = g(22). In fact, if g(z,) # g(z2), there is ¢ € Z*
such that Y[g(z1)] # ¢¥lg(22)}, and then ¢ = g € X*, p(z1) # @(z2), hence
f(z1) # f(z2). Clearly k is unique because f is surjective, and it is necessarily
a surjective convex set map. The essential uniqueness for f : X — Y is clear. J

DEFINITION 43. Let X be a convex set. We say that X satisfies the one
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dimensional injection rule (ODIR) when the map A € | = (1= )\)zy +Az; € X is
injective for any zy,z2 € X, 2, # 3. Also that X satisfies the two dimensional
injection rule (TDIR) when the map (1,3, A3) € b2 — Az +daz2+Asz3 € X is
injective for any convexily independent z3,22,x3 € X, wherel; = {{A1, Az, A3) €
RPs M +A+ 2 =1}

PROPOSITION 44. Let X # ¢ be a convex set, and: (1) X satisfies the cancel-
lation rule for convex sets. (2) X satisfies the one dimensional injection rule.
(3) X satisfies the two dimensional injection rule. Then (1) is equivalent to (. 2)
& (3), and (1) is equivalent to (3} provided X contains at least three convexily
' independent elements,

PROOF: (1) implies that X is vectorial (Proposition 34). A real vector space
satisfies (2) and (3). Hence (1) implies (2) and (3). Let us now prove that
(2) & (3) imply (1). Assume that A € J, z;,22,23 € X, (1 =Xz, + Az =
(1 - X)z; + Azs. We claim that z; = z3. Let z,,23,2; be convexily dependent.
Then zy,z2,z3 € [u,v]) where u,v = z,,2,,2; and [u,v] is the convex subset of
X generated by u,v. If u = v, then z; = z3. fu # v, then I is isomorphic
to [u,v], by (2). Since (1) holds for the convex subset | of R, hence for [u,v],
we get z; = z3. Let now z;,2;,z; be convexily independent. ), is isomorphic
to the convex subset [z1,z3,%3) of X generated by them, by (3). Since (1)
holds for the convex subset I; of R3, hence for [z1,22,23], we get 22 = z3.
Let finally X satisfy (3) and t;,t3,£3 € X be convexily independent. Call
T = [t1,t2,23] the convex subset of X generated by them. By assumption,
the map (A;,X2,A3) € Iz — Aj#; + Aoty + A3tz € T is injective. If u,v € X,
say that the convex subset [u,v] of X generated by them is full when the map
A€l (1-Xu+ v € X is injective, hence u # v. We firstly claim
that, if u,v,w € X are pairwise different convexily dependent, and one of the
[u,v), [u, w], [v,w)] is full, the other two are also full. Indeed, assume that [u,v]
is full. There are three possibilities: (i) v is a convex combination of u,w. Then
fu, v] and [v, w] are convex subsets of [u, w). If [u, w] was not full, it would consist
of at most three elements (by Proposition 37), hence [u,v] would consist of at
most three elements and [u, v] would not be full. Thus [u,w] is full, hence [v,w)] is

full too by v # w. (ii) u is a convex combination of v,w. This case is equivalent
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to the preceding one by interchanging u,v. (iii) w is a convex combination of
u,v. Then [u,w] and [w, v] are convex subsets of [u,v), and they are full by
u # v,v # w. We secondly claim that, if t € T, z € X,t # z, then [t,z] is
full. Take indeed u € T,u # t,u # z, once T is infinite, by (3). Let t,u,z
be convexily dependent. Then [t,u] is full by ¢ # u and the one dimensional
injection rule applied to Iz, hence to T in view of (3). Thus [t,z] is full by first
claim. Let now t,u,z be convexily independent. Then [¢, z} is full as a convex
subset of [¢,u,z], by t # z and the one dimensional injection rule applied to |3,
hence to [t,u,z]. Let finally z,,z, € X, 2 # z3. Choose t € Tt 5 z,,t # =,
once T is infinite. If ¢, z,,z; are convexily dependent, since |[t, ) and [¢, 23] are
fully by second claim, then [z;,z;] is full by first claim. If ¢,z,,2; are convexily
independent, then [z,,z,] is full as a convex subset of [t, z;,22) and by the one
dimensional injection rule applied to |5, hence to [t,z;,22] in view of (3). Hence
the one dimensional injection rule holds for X. We already know that (2) and
(3) imply (1). B

The two dimensional injection rule is voidly satisfied by a convex set X when
any three points of X are convexily dependent. Let us examine what happens
in this case.

DEFINITION 45. A convex set is linear when any three of its points are convexily
dependent.

PROPOSITION 46. A convex set X is isomorphic to an interval of R if and only
if X is linear, and has zero, one or at least four elements (in the last case, it has
the power of the continuum).

PROOF: Necessity is clear, because a convex subset of R having at least two
elements has the power of the continuum. Let us prove sufficiency, and assume
that X is linear and has at least four elements. We first claim that, if z;,...,2a €
X(n 2 3) are pairwise different, two of them z;,z;(1 < { < j < n) are such that
each of the remaining ones of these n elements is a convex combination of z;, z;.
This claim is true for n = 3, because X is linear. Assume n > 3 and this

claim true for n. We are going to prove that it is true for n + 1. Consider
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Z1,...,Zn41 € X pairwise different. One of the z,_),2p,Zp41, 88y Tnyg, is a
convex combination of the other two, say zn-3,z,, because X is linear. By the
assumption that the claim holds for n, there are i,5(1 < { < j < n) such that
each of the z,,...,z, is a convex combination of z;, z;. In particular, 24-1,25
are a convex combination of z;,z;, hence the same is true for Zn41. Thus the
claim is true for n + 1. We secondly claim that X satisfies the one dimensional
injection rule once it has at least four elements. Take any z,,2; € X, z; # z3.
Choose z3,z4 € X so that zy,z3,23,2, are pairwise different. Two of these
four elements are such that each of these four elements in a convex combination
of those two elements. Hence there are u,v € X,u # v, where u,v are chosen
among zi,Z22,Z3, T4, such that z,,z3, 3, z4 belong to the convex subset fu,v] of
X generated by u,v. The map A € | = (1 = A)u + Av € X is injective, because -
the image of its restriction to J contains at least two elements (Proposition 37).
Therefore X € 1 = (1 — A)z; + Az; € X is injective because z;,z; € fu, v],
z; # 22, and the claim is true. We thirdly claim that a linear convex set
satisfying the one dimensional injection rule satisfies the cancellation rule for
convex sets. In fact, let A € J, x),23,23 € X, (1 - A)zy 4+ Azq = (1=2)z1 + Az;.
There are u,v € X, where u,v are chosen among z;,z3, z3, such that I1,T2,T3
belong to the convex subset [u,v] of X generated by u,v. If u = v, then 2, = z3.
Let u # v. By the one dimensional injection rule, | and [u,v] are isomorphic
as convex sets. Since the cancellation rule holds for R, hence for |, it holds for
[u,v] too. Hence z; = z3, and the claim is true. It follows that X is vectorial
(Proposition 34). Let E be a real vector space containing X as a convex subset.
Fix a,b € X, a # b. Consider the straight line L = {(1 — A)a + Ab; A € R}in E
through a,b. We claim that X C L. In fact, let z € X. Consider the possible
cases: (i) z = (1~ A)a+ Ab(0 £ A € 1) in X, hence in E. Then z € L. (ii)
b=(1-Xa+2z(0 <A <1)in X, hence in E. Then z = (1 — 1/A)a + (1/A)b
in Eandz € L. (iii) @ = (1 — A)b+ Az(0 < A < 1) in X, hence in E. Then
z=(1/M)a+(1-1/A)bin E and z € L. Thus X C L. Since X is a convex
subset of E, it is a convex subset of L. Themap f:A€R— (1= A)a+ A be L
is a convex set isomorphism between R and L. Thus f~1(X) is a convex subset
of R, hence an interval containing 0,1. Finally, f : f~*(X) — X is a convex set
isomorphism between Fi(X)and X. 8
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Remark 47. Proposition 46 excludes X having two or three elements. The
reason is the following. If X has two or three elements, hence it is finite, its
convex set structure is defined by an inflattice structure (Proposition 41). It is
easy to see that (up to isomorphisms) there are three inflattices of two or three
elements, and that two of them are linear, but obviously not isomorphic to a

convex subset of R, once they have at least two elements and are finjte.

PROPOSITION 48. Fix a closed triangle M of vertices a,b,cin R?, Let N be the
union of the closed segments [a,d] and [b,c] of R?, where d € [3,¢) is fixed. M
is, but N is not, a convex subset of R2. Define the surjectivemap f : M — N
by f(z) = z for z € [b,¢], and as the point f(z) £ d where [a,d] meets the
parallel to [b,c] through z € M,z ¢ [b,c]. There is one and only one convex set
structure on N so that f is a convex set map for the convex set structure on M
induced by R?, Then N satisfies the one dimensional injection rule, but it fails
to satisfy the cancellation rule for convex sets. A convex set X fails to satisfy the
cancellation rule for convex sets if and only if either X does not satisfy the one
dimensional injection rule, or else it satisfies this rule and contains some convex
subset isomorphic to N.

PROOF: The surjective map f : M — N defines an equivalence relation on M,
which is easily seen to be compatible. Hence there is one and only one convex
set structure on N for which f is a convex set map (Proposition 30). The
convex set structures of M and N induce on [a,d] and [b,c] the same convex
set structures. Clearly N satisfies the one-dimensional injection rule. We have
(1-XA)a+Ab = (1-A)a+Acin N, since both sides are equal to (1-A)a+Ad in [a,d),
but ¢ # ¢. Therefore N does not satisfy the cancellation rule for convex sets. If
a convex set X fails to satisfy the one dimensjonal injection rule, or X contains
some convex subset isomorphic to N, then X fails to satisfy the cancellation rule
for convex sets. Conversely, let X fail to satisfy the cancellation rule for convex
sets, but X satisfies the one dimensional injection rule. There are tu,v € X
such that (1 ~ A)t 4+ Au = (1 — A)t + v for some )\ € J, hence for all A € J
(Proposition 38). Let ¥ be the union of the closed segments (¢, w] and [u,v] in
X, where w € [u,v] is fixed. Consider the bijective map g : N — Y defined by
9[(1 = Xa + Adj = (1 — M)t + Aw and g[(1— A)b+ Ad=(1-~Au+ivfordel.
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Introduce on Y the convex set structure that makes g a convex set isomorphism.
Then Y is a convex subset of X isomorphic to N.

PROPOSITION 49. Let z; ~ za(x1,22 € X) be an equivalence relation on a
convex set X # ¢. The following conditions are equivalent: (1) There are a real
vector space E containing X as a convex subset, and a real vector subspace F of
E, such that the given equivalence relation on X is induced by the equivalence
relation that F defines on E. (2) The given equivalence relation on X is
compatible, and both X and its quotient convex set Y are vectorial. (3) The
given equivalence relstion on X is compatible, and if A € J, z,z;,22 € X
(1=X)z + Az —(1 A)z 4+ Azz, then z; = 23, and also if A € J, z,21, 73 GX

(1=MA)z + Azy ~ (1 = Xz + Azy, then z; ~ z,.

PROOF: (1) implies (2). The equivalence relation defined by F on E is com-
patible. Hence the equivalence relation it induces on X is compatible. It is
clear that X has to be vectorial. We now prove that Y is vectorial. Consider
the quotient real vector space E/F and the quotient linear map 7 : E — E/F.
Then m(X) is a convex subset of E/F. Hence it is vectorial. The equivalence
relation defined on X by the surjective convex set map 7 : X — x{X) is the
given equivalence relation on X. Thus Y and #{X) are isomorphic convex sets.
Hence Y is vectorial. (2) implies (1). Let X and Y be vectorial. The convex
cones C = R} x X and D = R} x Y (Proposition 31) are obviously vectorial.
Consider the associated real vector spaces E and G, and convex cone isomor-
phisms f : C — E and g : D — G (Proposition 10). Define the convex cone
map h : C — D by h(),z) = (\,x(z) for \€e R,z € X, wherer: X = Y
is the quotient convex cone map. We have the convex cone map gk : C — G.
There is a unique linear map & : E — G such that kf = gh (Proposition 7). Set
F = k~1(0), which is a real vector subspace of E. If z;,z, € X, then z; ~ z,
if and only if x(z;) = #(z2), or A(1, 1) = h(1,%;), or gh(1,21) = gh(1,z2), or
kf(1,x1) = kf(1,2z3), or f(1,27) — f(1,2;) € F. Thus the given equivalence
relation on X is the inverse image by the composite convex set isomorphism
z € X — (1,z) € C — f(1,7) € E of the equivalence relation that F defines on
E. Finally (2) is equivalent to (3). We know that X is vectorial if and only if
A€d, 2,21,22 € X, (1 = M)z + Azy = (1 - Az + Azz imply z; = x5 (Proposi-
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tion 34). We now prove that Y is vectorial if and only if A € J, z,2;,2; € X,
(1 -X)z+Azy ~ (1 — Az + Azg imply 2 ~ z;. In fact, Y is vectorial if
andonlyif A € J, 4,41,4: CY,{(1-2)A® A4, = (1 -2)A® AA; imply
A; = A, (notation of Proposition 30). The assertion that A€ J, 4,4,,4; € Y,
1=2JA B I, = (1 - A)A @ AA; imply A; = A; is equivalent to the assertion
that A€ J, z,2y,22 € X,(1 - A)z + Azy ~ (1 — A)z + Azp imply z; ~ z5. §
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