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ABSTRACT

A quantum electrodynamical treatment of Coulomb
éxcitation in relativistic heavy ion collisions 1s presented.
It is shown that a subtle interplay between quantum and
relativistic kinematical effects induced by the nuclear rocoit
due to the excitation generates a qualitatively different
prediction {in certain kinematical conditions} frew the cor-
responding prediction of conventional theories. The present
formalism is applied to the clean fission problem and the
results seem to solve the puzzle assoclated to this provess

for some time.

Key-words: Coulomb excitation; Relativigtic heavy ion; Clean

fission.
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1 INTRODUCTION

The current image of the Coulomb excitation process
is based on a semiclassical picture of a distant collision
between two heavy nuclei, This is usually justified by arguments
based on the smallness‘of de Broglie wavelength of nuclei, and
the long distance nature of the Coulomb interaction, In
general the excitation energies involved in such processes are
small as compared to the incident energy. Therefore usual
descriptions of the Coulomb excitation mechanism introduce the
unperturbed Rutherford trajectory (and sometimes per?urbative
corrections to it), In particular this type of approximation
completely neglects recoil effects due to the excitation and
in this case the Coulomb excitation cross section has a

factorized form(I),

__gl_q_‘_ds*) ‘

A ~ dn) Y (1.1)
Ruth
where P, is the transition probabllity between two nuclear

if

states (i and f). There are several quantum treatments of the

Coulomb excitation mechanism and to our knowledye all of them
neglect recoil effects due to the excitation(Z).
Although these ideas are very intuitive, appealing

and give a correct descriptidn'of Coulomb excitation at tow

incident energies (E~ several hundred MeV) their straightforward
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extension to the relativistic domain is dangerous due to the
interplay between quantum and relativistic kinematical affecta;
it has recently been shown(3) that such effects can quanti-
tatively alter the total Coulomb excitation cross section and
qQualitatively alter the angular distributjon of Coulomb induced
fission fragments as coﬁpared to the semiclassinal result,
Experiment seems to indicate that a consistent description
should incorporate these combined effects(4).

From this point of view, the natural formulation
of the Coulowmb excitation problem should be Found in Quantum
Electrodynamics (QED).

The purpose of this paper is the derivation of
relativistic Coulomb excitation cross section for heavy ions
strictly within the framework of Quantum Electrodynamics (QED}.

In section II we derive the first-order contribution
to the Coulomb excitation cross section and discuss the details
of the interplay between gquantum and relativistic kinematical
effects, which give rise to the differences pointed out above.
-In section III we investigate the inclusion of some higher order
corrections to the cross section, Section IV contains an
application of our formalism to the clean fission problem‘q)

and section V the conclusions.
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2- QED CALCULATION OF THE COULOMB EXCITATION CROSS SECI'ION
IN FIRST ORDER

2.1 General formulation

We assume that the nucleus is described by the four
component nucleon field operator Yi{x) . The electromagnetic

interaction of nuclei is then described by the Hamiltonian

density

. (1%.1
Hy = JFeo ALt ’

where

r

J}*(&)r. Le“l’(x)‘ﬁ-}&(“‘%)ﬂi’(x) (11.2)
Tu are the Dirac matrices, T the isospin Pauli matrices and
Au(x} is the usual electromagnz=tic field cperator.
Now let us consider the process AIB + A'48B' via
Coulomb interactien. The loﬁest order contribution to this
process comes from the Feynman diagram shown in Fig. 1 and the

corresponding S-matrix element is given bylS,

STREEL *4’5*‘1Q‘ifwl\J?‘(uw\h-,fb'-b..(*-ﬂ(ﬂﬁ;\sr&v)\%.an ar.2)

A+B->A'tY

where |A:PA) ‘stands for the nuclear state vector of nucleus
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A with total momentum PA.DF(x—y) Btands for the Feynmwan
propagator for the électromagnetic field,

In general it is a rather difficult angd delicate
problem to define the nuclear matrix element (A':PA]j"(x)IA:PA)
covariantly, when momenta are relativistic, This is due to the
extended nature of the nucleus and one cannot simply separate
the center ot mass motion from the internal response of the
siystem, Fortunatelj for the Coulomb scattering process we My

assume that the momentum transfer AP

p'-p is always
non-relativistic. 1In such a case the.uxenti invariance of the
theory can be exploited to express the current matrix elements
in eq. (II.3) in terms of well established non-relativistic
nuclear physics terminology in the following way: Let n(PA)
be the Lorentz transformation matrix from the rest frame of A

to the system moving with momentum P Then

A
(11.4)

CAAB1IPGOIA B = Ny aIA T NLNADI A

where, for example,

- -4
By = A (2R, (ri.

1
—

From now on the notation ?C stands for the value of ¥ in

the rest frame of C. We have also
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<B"'P“J);(Y“Bi1’b> = Aq)l (Ia)@"fé \Jr[NL(Fb)‘I]\Bi?a> (TT.6)

With the help of the Fourier decomposition of the propagator

DF(x-y)
..Lqi_(x-y)
1 4+ A |
DF(K-T)‘WJAQI ﬁ 2, (11.7)
we get

Svesin = 55, gaﬁja*,,ja; AMCRVARTRIEE 00
R

RPN @M AR @ | WAl B> e

P)P“ Ry

d o
(m*g % CLAINCITN S

/\

g -
tqﬁ'.Ya Vo, _

547 s <B'1Pb\\jr(fs)‘55'fn> (11.9)

In this expression, nuclear matrix elements are defined in the
reference systems where momenta P are non-relativistic.
Now let us separate the nuclear center of mass

motion in the matrix element
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44._ -'iﬁ; xh A
IAH XA-Q. , <A’P':\:)’~(§¢.)\A;E> (I1.10)

In terms of coordinate representation, we have

I, -8{d'% T (e FR L

A" XA i1 ~S‘; Wi e <.A, Ph\ltL .-N:$§>

ZA

L K;f: 8(\{‘-\&)(\1‘ ...\rNC\A,"ﬁk> (I1.11)

where we have used the fact that the current density is a local

operator so that it can be expressed as

2, |
Jl"‘(i) - e ; XE) g(i'ﬁ- \?}) (11.12)

in first quantized form. ZA is the proton number of tlie

nucleus, G} is the positioﬁ operator for i-th nucleon nnd
Y?i) is the usuval Dirac's vy matrices for i-th nucleon
spinor wavefunction.

Since EA is non-relativistie, the huclear wave-

function can be factorized as

- -t - . R)
<lﬁ...lrn A B o e % Ta
where » " YT | <¥1 §N°\A>

&: = W~ R | (11.13)
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) NA
is the intrinsic coordinate of i-th nueleon, E: &i =0),
i=1

|A) is the intrinsic nuclear state, and Vv la the normalization

volume. W is the nuclear center of mass coordinate

Na
R = -l\Ll Z wy (11.14)

Now using the identity

T (0 (8 uﬂ“ja m §(R- 43 )

i L LVEL ‘,'ﬂl

SJ R mjé £ S (Z z.) ar.1s)

and the completeness for the nuclear intrinsic state

Ne 3 Ng
zgdgtg(a Ei)‘z‘i..-@Nc)(gi.,.guc\E,jl | (11.16)

we find that Eq. (I1.11) takes the form

IA:' e 3;\ (2704 %4(?;_ -a) F;}-k.(.éﬂ:k) (11.17)
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where

o
_ 5. E
SECR AN *1 (I1.18)
v =2 198K pFelhay
and 3"(g) has the sane forim as before eq. (11,12},
ZA
\'ST"(E) ___ez,‘gg:) 8(‘5-3.3 (11.19)
(=4
but_here it represents the intrinsic current operator. 1In eq.
{I1.18), we have identified |A) = |Ags) and |A') = |E£) to

specify the initial nuclear ground state and final excited

state, respectively,

The S-matrix, eq., {II-9} can now be written as

S @t B(Pw B anZAzB

AvB-»Arg & “\7_‘

NS (R—RIE(F.)

(o)
(P’\ ?ﬁ)-i-l.e B}L “

(1I1.20)

The differential cross section is then given by

L

35_...) - 4(G(ZAZB)TJE:]AE: n(EXY n(EY)
Ch

MAMBM Mg . L ')\Z(r MA Ma) \F /\F 2 (11.21)

() TN, MM
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where n(E*) denotes the level density of the nuclei, a is

the fine structure'constant, M' 1is the final state mass, ‘I'he

four-momentum transfer q is written as

(1_: (T:\—Pﬁ:) (11.22)

Also

z | | 1
A% (x, Y.2)= J(x-y-z)(xw +z)(K-T+zJ (x+y=2) (11,23

and Vs is the total center of mass energy of the system.
Since we consider small momeantum transférs we ran
safely neglect the excitation energy dependence in the integrand

of eq., (II.21) except for q and I's, where this dependence

is crucial, Thus

é..g. _ 4.2 MalAg ZJAE*‘ | » x E«”\[sz”,
SQ )cu- 40( (_\/;_'_- A dE; “(EA)“(EB)\ Jerr.2a)

¥
This is the general expression for the first order
relativistic Coulomb excitation cross section within the QED
formalism. Note that eq. (I1I,24) contains only conventional

nuclear matrix elements.
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| 2.2 Ptire projectile excitation —quantal and kinematical effects

If the target nucleus remains in its ground srate
one can safely neglect the vector components of FBu(qB) since
they are of order %, v being the nucleon velocity inside the
nucleus, With this approximation and using an explicit expression

for A(PA-v PB)

( Y 0 0 -B7)

0 1 0 0

A{P_-+P_) = (11.25)
A B 6 0 1 o0

- 8Y 0 0 Y J

where B and ¥y are the usual Lorentz factors corresponding to

the laboratory incident energy, we get

Ik, N\, E \$ F;(E'ﬁh)—fg‘F:(qu)\z \Fo(q Q\z (11.26)

It is found to be convenient to split ﬁf(an) into

the longitudinal and transverse contributions as

ASCHERNCRATE I C A (1121

where

e WE . ' 11.28
5 (M{Jh(ﬂ“ &-BaCEL () Agey
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&,
AN [E e B EICE Jlagy

with h{aa) being a projection operator in the direction ot
EA, and &, the unit vector in 2 direction, ‘the
first component of Ff(ahl, FE(GA) can be cast into the form:

F(g 5 AnE .
8 < &, 3 G IE TN

___,\_:f{:_\_z_gég Vg

x,c.“A

REN ViV Aes

=R 3'
\z% SAE(E B T BN P Ay
9a)

where we have used the continuity equation after integrating by
parts in last step of eq. (II.30)., Using this result, the cross

section for pure projectile excitation reads,

40) - dmz )g“E (= e

), S %— ‘lfb)\‘” 31)

where

= - f"‘"(e‘\‘ﬁlg ) JAECEN Iptatay

‘,_'.'c'

"[86\ 3;-533@5—:\ J.L(I)l Aqs?‘% T e (1I.32)
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The kinematical factor q4 in eq. (I1.31) is a

function of the excitation energy,

4 2 2 z |
q - {SEA -%h - 2PA(PA+8PA)(i-cose)] (11.33)

where
§E - - —t‘—*—- E™ (I1.34)
Vs'
and
Es SE ‘
SP;‘: 2 BS - A - MA Ea E* {I1.35)}
R - EgoE =’ B

The expression (II.33) is valid in genrral, mquations
(I1I.34) and (I1I1.35) are valid for small excltation energies

only. On the other hand

2 (L-)EX 4 2R (Pa+3R)(4-wose)

\B}M A (11.36)
Ty

with

Yz_= fsT& T;T (I1.37)

where denotes de Lorentz factor of target .nucleus B

83 g
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in the CM system,

In the limit of no excitation

SPA "%EA = O

and it is simple to check that one recovers the well gnown
Rutherford cross section from eq. (II.31},

It is Qorthwhile to discuss at this point some
essential differences with the semiclassical expressions for

the Coulomb excitation mechanism at relativistic eneaﬁes“"{zh

a} Even in the cases where excitations are important,
one can still recover the factorized semiclassical expression

from eq., {I1,31) provided

2

EEz"SPz_ 1 2 E*
1L~ t0se D> ;‘?\(PA-\-SP) - T2 Q(‘i::’") (1I.38}

In nonrelativistic Coulomb excitation processes this
condition is easily satisfied, since most of the contribution
to the cross section will come From finite deflection angles,
However, in the relativistic limit, this will not bhe the case

since forward scattering is dominant. Thus the factorization
assumption is not valid, 1In particutar for forward angles which

satlsfy the condition
e

0 ("\q-%- (T1.39)
A
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the semiclassical expression for the cross section completely
breaks down.

Apart from the analytical expression for the cross
section within QED, a very important point in our quantum

treatment, resides In its prediction that the collective nuclear
excitation should be quiﬁe different from those expected From
semiclassical theories in this kinematical region. For Eorward
angles, {Eq, (I1.39)), the momentum transfer seen by the nucleus

A is almost parallel to the incident beam axis,

— A . (11.40)
e = - \qﬁa\

since gq, = P .0 << IqAI-(see Fig. 2.a). 1In this case the
contribution to the cross section will come from the first term
on the r.h.s. of Eq. (II.32), which contairns the nuclear transition

operator
S“‘@ F(E) -6“—]"‘.? (I1.41)

This operator obviously causes the charge polarization to be
parallel to ﬁh. Since QA is parallel to the beam direction,
we conclude that the charge polarization of nuclear final
states are populated in the longitudinal direction for forward
angles.

On the other hand, in the semiclassical approximation
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where recoil effects due to nuclear excitation are neglected,

we always have

— A
‘:11“- e, ~ o (11.42)

for forward angles (see Fig. 2.b), namely QA is perpendicular
to the incident beam direction. Therefore, the semiclassical
treatment leads to the conclusion that the Einal charge

polarization state is transversal, contrary to our present

result.

b) In the semiclassical approaches a given- scattering
angle corresponds to a well defined Vaiue For the wamantum
transfer. 1In this way the scattering angle limits the excitation
energy which will be available. On the other hand our quantum
treatment shows that the scattering anglé specifies only the
transverse component of the momentum transfer and even for zero

scattering angle high excitations are kinematically allowed.

-3 DISCUSSION OF SOME HIGHER ORDER CORRECIIONS

In heavy ion reactions Coulomb distortion effects
are known to be important, Usually these effects are treated
by DWBA (Distorted Wave Born Approximation) where .the two

nuclei are treated non relativistically and recoll effects
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neglected. In order to treat this problem covariantly one has
to sﬁm up all highef order contributions arising Erom the
exchange of internal photons (see Fig. 3). One of the well
suited approaches to this problem within QED is the eikonal
approximation in quantum field theory developed by M. Levy and

(6)

J. Sucher . They study the Feynman amplitudé M(s,t) describing

the scattering of two spin-0 elementary particles, a and b,
interacting by the eﬁchange of spin-0Q0 mesons. They show that irl
Mn(s,t) (the contribution to M(s,t) arising from all n-th
order Feynman diagrams in which exactiy h  mesons are exchangnrd
between a and b)) is written in an appropriately symmetrized
way, and if the terms in any a or b particle propagator which
are quadratic in the internal momenta are dropped, the resulting
expression for the amplitude may be carried out in closed form.
To adapt their formulation to the hucleus-nucleus Coulomb
excltation processes, we have to introduce, instead of the
spin-0 particle propagator ap(p), the nuclear propagator

G(p) for the intrinsic nuclear state, For a nucleus whose
total four momentum is p, the intrinsic nuclear propagator

can be expressed as

G{(P) = 4 (111.1)
VP* - H +ie

in its rest frame, Hy is the nuclear Hamiltonian operator
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(including the rest mass). We also define the vertex operators
Eh(q] which take the nuclear transitions into account., "o

simplify our derivation here we consider only one step excitaticn,
where the nuclear excitation takes place at once in one of the

vertices, 1In addition, we assume that

<E*‘-F}l (QME*) I <AC-'|5\_F}.-.L“;)\A¢,3>_ (I11.2)

Let S,.n.,a'4B be the scattering amplitude corresponding to
the sum of all diagrams of the form indicated in Fig. 1. Using
the same technigue as 1n Section II to express nuclear matrix

elements non-relativistically, and after separating the nuclear

CM motion, we can write

SM& ArE (ZTF)E)(P“? PA ?I_)le_ (111.;)-

where

W= M,

(111.4)
n=l

and

My Sﬁ“ ki (1, (k) (@) §7(g- 2 k)

T=1 L= (2‘“‘)4

YTEI' (—c (k)i E ,w (k*)) (LQA(%—?:L‘&;‘})

LT

. RN (RS T PG ‘~m.‘<! I111.5
2[1;‘1( R ()T G 6 (R, D) e

D
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where kl' ey kn denote the momenta of exchanged photons in
the order of emission along the world line of nucleus A and
the nuclear excitation is supposed to occur at | = r.DFtki)

stands for the photon propagator

i .
DFU‘Q= kf’-&- P (I11.6)

as before, The factbr Fu (E?J is the Fourier trausform of

i
the nuclear current, as defined by

ks

F () - /\‘;Qmsés%@s\a e OV Aed

;L:.E

- £
F}ll(kju)= /\}Lu‘ (B)'PE <qu\¢ JW(E)\BG|S> (111.8)

(
u

and F *}(EA
r

¢! given by

K) , = 6 ¥ '_E:-E .
I_:).i:(k:)___ /\)”(A)Sclé <E \t JU'Q)M"JS> (11?.91

where A(A} is the Lorentz transformation matrix from the rest
from of A to the observational system., 'The Functlion Gn(k)
corresponds to the expectation value of &(k) in eq. (III,1)

in the appropriate intermediate nuclear state of the indicated

nucleus., The summation Z is to be performed over all distinct

D

diagrams in which the momenta k <o e k may be absorbed

1 - n
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along the world line of b. The primed variables refer to

suitable permutations of the corresponding momenta.

It turns out to be convenient to use the energy-
momentum conservation §-function in order to eliminate the r-th
momenta kr at the r-th vertex, where the nuclear excitation
takes place. 1In this case, the products of nuclear propagators

will be written as

“.L° A L . T . A L

Eu GI (-PA"' hik‘) = ot L <AQS\G]A(PA'%Li)lAq5>‘
n-d ¥ A n-Jd
;T £<E \ GIA('PA'+ k;)lE-*> (11Z.10)
z Y yy

A typical member in the first group of factors can be written as

el G A=K Aged = (A, = Ae S,
) ‘*\W-Hm“ Ao

- - o~ M (111,11)
2 2 _-—‘_ e ’P\‘&'i‘ {E
\ﬁ?\-i-K“ZB\K MA-\ \ A
where we have used the eikonal approxlmatiun‘5, and
kA A
PA = MA (171.12)

A typical member in the second group of factors .can be written

as
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(B K - H +ie
- L Ma (L11.19)

[Reke2RK-Mpie Tk ie

where we have used

2 Z
B = [“’\'A (1T1.14)

From this point on it is a straightforward matter
to follow the steps in the derivation of the scattering

amplitude given in (6) to get

M = Sé“x ;grxb(x) :%(x) (I11.15)
where
cm‘ —ikx . )
2 e e FRIFE
and
K= =i (U4 0,4 Uy e V) (111.17)

with
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U = U(x,P, ., P.)

{II_I.?B)

and

ik
U(le.P')a—L Ak MA_LH(LN')F)‘("*B)QJ (TIT.19)
(27')4 (PK*LE.'\)Q ~Pk+ A.E)(‘k 4 L\D

In this form, the studied higher order corrections
ix

are contained in the factor e (eq. (III.15}) and correspond
to a propefly symmetrized DWBA phase. It is relatively siwmple
to show, again following the steps of ref. (6) (section B), that
the eikonal phase can be expressed in the static limit as a
convolution integral of the nuclear charge densities with the

Coulomb potential. If we neglect the finite size of the charge

distribution, we obtain
@

’x.—-—a-cxzof[ = +IIL—]A§,

lir+ w's | r- w.g)

= o liw [\-h\’S"" . W 4 JEH—J(W‘.w')g-\-r{I +

‘Suax-—-m ) ‘
S‘EW\{W.

k“\ 1r'ul+JS é(“" W)g + vt \}

S=g
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which contains a divergent term as cmax + o, ﬂowever the
eikonal function X enters in the matrix element as eix{x,
so that the constant divergent factor can be'dropped since it
does not affect the final form of the cross section. Thus the

effective eikonal function in the static limit reads

S.ta-tlc
X —we€BZ [L“ sin*(28) + (n cod(Z2) - 2lnapr

1'10-
which is exactly the properly symmetrized DWBA phase factor(7),

where 6 and ©

1 5 @are, respectively, angles between I  and
P and I and P', In this limit and for small scattering
angles this DWBA-type correction to .the cross section is known

to be very small,

4 APPLICATION: THE CLEAN FISSION PROBLEM

The Coulomb induced Eission represents a well snited
problem to test our results. In fact, recent studies of rela-
tivistic (1 Gew/h} Uranium beams shows a beautiful example of
such a process‘sj. These experiments reveal that approximately
700 mb of the total cross section (averaged over the emulsion
components) corresponds to the so called clean fission events

in which only two heavy fragments are observed. Recent calcu-

lations using the conventional semiclassical theories under- .
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estimate the experimental cross section by a factor of seven.
However, the most intriguing fact with respect to these data is
the angular distribution of the fission fragment=, which
exhitibts a peak at zeroldegree in the Uranium rest frame, This
also cannot be reproduced by the available theories‘a).

In order to evaluate the total cross section for the
clean fission events we assume that the projectile excitation
mechanism is a colleétive dipole or guadrupole transition.
Furthermore we assume the target to remain in its ground state,
In this case the excitation energy is of thée order of 10 MeV
and if the scattering angle is small, the second term on the
r.h.s. of eq. (II.32) can be safely neglected. The basic
ingredient in the evolution of eq. (II,32) is then the transition
density

CEAL P Aee> = Pl PGl Acey

(Iv. 1)

(Rl p(§,) | Aged
where [D) and |Q) «correspond to the dipole and guadrupole
state respectively. It is well known that the macroscopic

Tassie's modeltg) gives reasonable estimates of these quantities,

and we shall use it in what follows. We get

Ll

() pElAgy < S%ﬂ Y@ W s
i |

>

_ OE z . .
R L R T YO S B
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where N, is a normalization constant determined by the sum
. . dp

rule for low momentum transfers. Alsoc de derivative EEQ is

approximated by a gaussian centered at the nuclear radius Ry

and has a width a, Analogously we have

@lpEIAGY 2N * T*[ 3R+ 30 )G )

+qm ( ):wm(q’fa'p)-\--w(—R )MSCﬂA’RQ} (1v.3)

Now, a word about the angular integration is in order: The so
called fission events are experimeantally characterized by the
apparent lack of target recoil (or fragmentation}. This can be
verified by checking the copianarity of the Fissioning Fragments
with the incoming beam. However, in the most favourable
experimental conditions this check cann;t rule out transverse
momentum transfers < 100 MeV/c ., The transverse momentum

transfer is related to the scattering by
Ax = L - WsO,,, = q“-r W\Qx) (1IV.4)

Finally, integrating eq. {II.31) up to © we get

max

T =0T (*E2z) L 2 B(ey( MaMs T 2
B %2, —R: )( V—s——l ) K‘A“"B

LR +4(& Yo @ma |

(Iv.5)
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and

Q_ aW(xZp2y) L 45 B(E)( MaMe ¥

> («az)zﬁﬂﬁfB( RS = S

i z,

N « W=k 3

dx [- L — 4 A l =

1-4 N+ 8h-x)] © 3Ry = FaRA( )JL(%“@)
~Ax

- 3
+ Tgrac’“(%;) >in (FaRA) + “%"(%jms FaRa) \""

{Iv.6)

with
2
B(E1) = 66.4 Em
B(E2) = 2.54x 10% fn?
A-+B MA

and T is the laboratory kinetic energy of the projectile

The total cross section for clean fission events in
emulsion is given by an average of eq. (IV.5) and (IV.6) over
the various target nuclei multiplied by a fission branching
ratio which is assumed to be 0,25 in this excitation energy
range. In Fig.4 we plot the calculated total cross section

of the events in the emulsion as a function of a& . For
max
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values of ET up to 60 MeV/c, the total cross section is
increased by :aﬁactor of 3 at least as compared to the cor-
responding values in ref. (8 ). Note the saturation of the
calculated contribution at ET ~ 60 MeV/c . NAfter this value
the main contribution comes frgaxthe second term., We have nhot
estimated its contribution to the total cross section however.
This is one of the reasons why our estimate is certainly
conservative, Besidés, even for small ET {([orward angle
scattering) high nuclear excitation other ?ﬁ:n these Dipole and
Quadrupole states may well contribute to this fission mechanism,
e.g., the photon absorption‘by a correlated pair of nucleons
and so on, Therefore we believe that the Coulomb excitation
process is responsible for the largest part of the total cross
section of clean fission events,

As for the fission fragments angular distribution,
we have pointed out in section II that the forward angle
scattering (corresponding to finite nuclear excitation) always
polarizes the final state in longitudipal direction. This
explains naturally the forward peaked angular distribution of .
fission fragments. When the scattering angle becomes relatively
large the main contribution to the angular distribution comes
from the second term of eq, (II.32) and in this case also the
polarization will be in longitudinal direction since the transveyrze

component of the current induces nuclear polarization perpendicular

to EA, henceforth parallel to the beam djrection.
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5 CONCLUSIONS

We have developed a quantum electrodynamical

approach to relativistic Coulomb excitation in heavy jon
-collisions, Due to the small momentum transfers involved in
this process it is poésible to derive covariant expressions

for cross sections in closed form which contain usval non
relativistic nuclear physics matrix elements. Our approach
represents not only a formal derivation of the traditionat
available results, but reveals new physicai aspects of such
processes as a subtle consequence of the interplay between
quantum and relativistic kinematical effects., In fact one of
the essential differences between conventional treatments of
Coulomb excitation and the present one resides in the predictions
for the polarization of final states, This can be experimentally
checked by the study of the angular distribution of Coulomb
induced fission fragments. At this moment there are only few
experimental results available and they seem to confirm our.
predictions.

Since the longitudinal polarization will be enhanced

for high excitation energy states and forward anglea the ideal
experiment to test our results would be a direct measurement of

charge polarization states in such conditions.
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FIGURE CAPTIONS

Flg., 1 - Feynman diagram for the first order relativistic Coulomb
excitation. |

Fig. 2 = Schematic illustration of the momentum transfer direction
a) The case §p ZPT' b) The case &p <<PT.

Fig. 3 - Higher order elastic correction, where the nuclear excita
tion takes place at only one of the vertices.

Fig. 4 - Total cross section for clean fission events in nuclear e

mulsion plates due to Coulomb excitation. Py is the ma
max
ximum value for the transverse momentum transfer.
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