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Abstract

We propose a phenomenological set of quantum states allowing the introduction

of dissipation at the quantum level. We, further, write a Feynman Path Integral for

quantum propagation of such sub-set of quantum damped sates.
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It is an interesting and important problem in \Turbulent Physics" to understand the

e�ects of classical friction and damping at the quantum and classical level ([1], [2]).

In this note, we follow the previous studies of refs. [3], [4] to analyze the Botelho's

dissipative anomaly factor in the modi�ed Caldirola-Kanai action by means of a non-local

discretization process.

Let us start by writing the one-dimensional Schr�odinger equation in terms the polar

form ([2])
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In order to relate the Schr�odinger equation (1) { (3) with studies of ref. [2], we consider

the space of quantum states which are subject to dissipation (ohmic-damping phenomena)

composed only by W.K.B. pure phase states with �(x; t) � constant.

In order to introduce damping in our quantum system we consider the phenomeno-

logical term ��S(x; t) in eq. (3) ([2], [3]) where � is the classical viscosity constant.

As a consequence of the above made remark we should consider the generalized Phase-

Hamiltonian-Jacobi equation for the quantum phase in eq. (2).
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Let us solve eq. (4) by considering the usual damping ansatz ([3])

S(x; t) = e��tS(0)(x; t) (6)

where S(0)(x; t) satis�es the mass and potential time dependent term
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which solution is given by
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The general dissipative quantum phase eq. (6) is, thus, given exactly by the, modi�ed

Caldirola action below and found �rstly in ref. [3] in the framework of damped Hamilton-

Jacobi action
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Let us, thus, write a Feynman path-integral representation for the W.K.B. phase

quantum states propagation in the single case of V (x) � 0. as done in refs. [2].
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S(x;t) (10)

We follow, thus, Feynamn by looking the in�nitesimally short time intervals tk+1�tk =
t� t0

N
= ", where t and t0 are the initial and �nal time propagation in his propagator

quantization methods
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The in�nitesimal time (W.K.B. limit) Green function is determined by the Feynman-

Dirac prescription and taking into account the complete propagation time e��t into the

discretization of the damping term in the modi�ed Caldirola-Kanai action, and thus,

leading to a non-local time discretization process
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Note that in order to analize anomalous pre-factor in the searched fenomenological

Feynman path integral we still followed refs. ([3],[4]) by introducing a weighted rule
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(a+ b = 1) for the discretization of the Modi�ed-Caldirola-Kanai term exp �(t��) in the

generalized classical action eq. (9).

We have, thus, the following short-time representation for the e�ective quantum prop-

agator
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If we make xk = xk+1 + � and tk+1 = tk + " and consider the Taylor expansions in eq.

(4)
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and by keeping the lowest-order terms, we obtain the explicit expression for the pre-factor

in eq. (13).

(A(tk+1; tk))
�1

=

Z +1

�1

d� exp

�
i

~

1

2"
�2e��te�(atk+1+btk)

�
(16)

or explicitly
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As a consequence of eq. (13) and eq. (17), we can write the phenomenological Green

function for our dissipative quantum system for arbitrary di�erent time times as a Feyn-
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man Path-Integral
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Now we can de�ne formally the limits in eq. (18) as a well de�ned product Feynman

measure over paths multiplied by a general damping anomaly factor as �rstly found in

refs. ([3],[4])
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Here the in�nitesimal step in the dissipative anomaly factor in eq. (20) is given by

the expression below and is independent of our original weighted time-interval partition

rule used for the dissipative term exp �(� � t) in the Generalized action eq. (9)
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We �nally obtain the main result of this note similar in its structural form to that

obtained in refs. ([3],[4]) from the usual Caldirola-Kanai action but di�ering from the

result of ref. [3] by its dissipative anomaly factor similar to that of ref. [4]
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where we have reintroduced the potential in our analysis since its presence does not alter

the above cited dissipative anomaly factor.
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Work is in progress to analyze the electronic conductivity by introducing a elec-

tric �eld V (x) = �eE � x and evaluating the resulting electronic current f(x; t) =

 (x; t)
�
�

i
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�
 (x; t) by means of the e�ective-phenomenological Green function eq.

(22) (at a W.K.B. limit ~ ! 0) and with a plane wave (free electron) initial condiction,

namelly:
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