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Zonal-flow instabilities due to drift-wave turbulence in the presence of toroidicity-induced parallel
�neoclassical� viscosity and allowing for the toroidal flow are studied. It is shown that, as a result of
the neoclassical viscosity a new type of zonal-flow instability is possible, leading to the generation
of the considerable toroidal zonal flow. The toroidal instability is complementary to the previously
studied instability resulting in the poloidal flow generation and occurs as a second branch of the
general dispersion relation describing the evolution of the poloidal and toroidal flow. Nonlinear
saturation of the new instability is studied. It is shown that saturated zonal toroidal velocity,
generated in this instability, is large compared to the mean cross-field drift velocity as the ratio q /�,
where q is the safety factor and � is the inverse aspect ratio. In addition to the broad turbulent
spectrum of drift waves, a monochromatic wave packet is considered. It is revealed that for the case
of sufficiently strong neoclassical viscosity such a wave packet is subjected to generation of the
toroidal zonal flow due to instability of hydrodynamic type. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2177588�
I. INTRODUCTION

Large-scale convective plasma motions can be spontane-
ously generated by small-scale turbulence �see Ref. 1, and
references therein�. Convective cells can be generated as a
result of decay instabilities.2 Such large-scale coherent struc-
tures play an important role in overall dynamics of small-
scale turbulence, in particular, in its saturation. Often, the
convective cells are generated in the form of a band system
of alternating coherent flows �zonal flows�. A strong shear of
plasma velocity associated with such structures has been in-
voked as a mechanism of the suppression of the anomalous
transport in the tokamaks.

Most of the previous works on zonal flows dealt with the
situation when the generated flow is in a poloidal direction.
Such an ideology goes back to the approximation of slab
geometry, used in studying the drift-wave turbulence. The
fact is that, in the scope of this ideology, the toroidal velocity
is a free parameter which can be considered for convenience

as negligibly small or identical to zero. Then the poloidal
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velocity Vp proves to be approximately the same as the mean

cross-field drift velocity V̄E�V0 induced by the mean radial

electric field Ēr,

Vp = V0, �1�

where the overbar means the averaging over the small-scale
oscillations. On the other hand, as known from the theory of
equilibrium plasma rotation in tokamaks �see Refs. 3–5, and
references therein�, there is a toroidicity-induced parallel
�neoclassical� viscosity that dampens the poloidal rotation. In
neglect of the ion temperature gradient, the neoclassical vis-
cosity is proportional to the poloidal velocity, with the vis-
cosity coefficient dependent on the plasma collisionality de-
gree. The neoclassical viscous force affects the poloidal
velocity Vp so that Eq. �1� is no longer valid. In this case the
approximation of negligibly small toroidal velocity is also
violated. As a result, instead of Eq. �1�, using the ion radial

3–5
motion equation, in the case of cold ions, one has
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Vp = V0 + ��/q�V� , �2�

where � is the inverse aspect ratio, q is the safety factor, and
V� is the mean parallel velocity, which in the case of small �,
��1, is approximately equal to the mean toroidal velocity
Vt. Thus, the theory of the equilibrium plasma rotation sug-
gests that the poloidal flow is strongly suppressed for suffi-
ciently strong neoclassical viscosity. In this case the radial
electric field results in the toroidal rather than poloidal flow.
The toroidal velocity Vt is given then by

Vt = − �q/��V0. �3�

The effects of neoclassical viscosity involving the toroi-
dal flow have been extensively studied in the theory of linear
resistive instabilities6–10 and in the magnetic island
theory.11,12 Evidently, a complete theory of the zonal flows in
a tokamak should include the effects of the neoclassical vis-
cosity and toroidal velocity. The goal of the present paper is
therefore to formulate such a theory for the case of drift-
wave turbulence driven zonal flows.

The idea that the toroidal zonal-flow can be generated by
turbulence goes back, probably, to Ref. 13. Then this idea
was discussed in Ref. 14 and later in a series of other papers,
including Ref. 15.

The zonal flow theory specifically in a toroidal geometry
was developed, in particular, in Refs. 15–20. The neoclassi-
cal viscosity has been included in Refs. 16, 19, and 20 in the
analysis of the poloidal-flow instability. In Refs. 17 and 18
the initial value problem for poloidal flows governed by
collisionless17 and collisional18 processes has been consid-
ered. One can show that the processes, studied in Refs. 17
and 18 by means of the kinetic theory, can be expressed in
terms of the neoclassical viscosity.

The recent state of the theory of neoclassical zonal-flow
instabilities can be understood turning to analogy with the
theory of linear neoclassical instabilities in tokamaks.10

Roughly speaking, these instabilities can be separated into
the fast and slow ones, depending on their growth rates. In
the studying the fast instabilities, such as the ideal internal
kink and ballooning modes, allowing for the neoclassical vis-
cosity, one can neglect the perturbed toroidal velocity. This
approach was used, in particular, in Refs. 22 and 23, where
the m=1 ideal internal kink mode was considered. In con-
trast to this, in studying the slow linear instabilities, such as
the resistive modes,6–10 allowing for this velocity proves to
be necessary.

According to Refs. 22 and 23, see also Refs. 9 and 10,
incorporation of the neoclassical viscosity into the theory of
ideal modes does not suppress but modifies them resulting in
the appearance of a family of the so-called ideal-viscous
modes. At the same time, according to Refs. 6–10, one of the
main neoclassical effects on the resistive modes is the renor-
malization of the perpendicular inertia of the type �the
Callen-Shaing renormalization�6

1 + 2q2 → �q/��2. �4�

The same inertia renormalization has been revealed in the
11,12
magnetic island theory.
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Allowing for the previous text, let us discuss what are
consequences of the incorporation of the neoclassical viscos-
ity into the theory of poloidal zonal flows undertaken by
Refs. 16, 19, and 20. Looking at such flows as analogy to the
ideal modes, it can be seen that, in contrast to the ideal
modes, the poloidal zonal flows, studied in the previous ref-
erences, are suppressed by the neoclassical viscosity. Then,
at a first glance, there are no neoclassical poloidal-flow in-
stabilities, i.e., the corresponding topic is exhausted.

Meanwhile, turning to Ref. 24, one can see that the
poloidal-flow instabilities, studied in Refs. 16, 19, and 20,
are not complete family of such instabilities. The fact is that
Refs. 16, 19, and 20 dealt with the so-called resonant zonal-
flow instabilities, driven by the negative diffusion effect, and
inherent for a sufficiently broad spectrum of the primary drift
waves. In contrast to this, Ref. 24 studied a different type of
instabilities called the instability of hydrodynamic type, in-
herent for a monochromatic drift-wave packet. Effect of neo-
classical viscosity on the zonal-flow instability, pointed out
in Ref. 24, has not yet been studied. Therefore, as a whole,
the topic of neoclassical poloidal zonal-flow instabilities
seems to not be exhausted. One can suggest from general
considerations that a new family of neoclassical poloidal-
flow instabilities, similar to the ideal-viscous linear modes,
should be revealed. Following analysis confirms this sugges-
tion.

By analogy with the linear theory, the poloidal-flow in-
stabilities can be called the fast zonal-flow ones. In this con-
text, the toroidal-flow instabilities can be called the slow
ones. The characteristic growth rates of such instabilities are
smaller than those of the standard �fast� zonal-flow
instabilities.1,19 Evidently, the slow zonal-flow instabilities
are of the most interest in the conditions when the standard
poloidal-flow instabilities are dampened, similarly to that the
resistive modes are of interest only in conditions when the
ideal modes are stable.

It is of interest for us to elucidate whether there are
preceding studies on slow zonal-flow instabilities. Then we
note preliminarily that there are two main approaches to
studying the zonal-flow instabilities. One of them is the ap-
proach of wave kinetic equation, going back to Ref. 25. It is
the approach used in Refs. 19, 20, and 24. The second one is
the approach of the theory of the convective-cell generation
going back to Ref. 2. This approach was used in Ref. 21
allowing for the neoclassical viscosity. Note that the term
“neoclassical viscosity” has not been used in Ref. 21. How-
ever, one can see that the final results of this reference con-
tain the inertia renormalization given by Eq. �4�. This shows
the presence of the neoclassical viscosity.

Dealing with the standard drift-wave turbulence, one ne-

glects the wave part of the parallel velocity Ṽ�. Meanwhile,

the value Ṽ� is important in the problem of the ion tempera-
ture gradient turbulence.15,26,27 In accordance with Refs. 15

and 27, for Ṽ��0 there is parallel component of the Rey-
nolds stress leading to generation of the parallel flow, and
thereby, the toroidal flow. However, this generation mecha-
nism of the parallel flow is beyond the scope of the present

article.
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Our starting equations are given in Sec. II. We use them
initially for studying the case of sufficiently broad turbulent
spectra of drift waves, Secs. III–V, and then turn to the case
of the monochromatic drift-wave packet, Sec. VI. In Sec. III
we derive the zonal-flow dispersion relation for the broad
drift-wave spectra. Its analysis is performed in Sec. IV. This
analysis reveals that, in addition to the fast zonal-flow insta-
bilities, there are slow zonal-flow instabilities in allowing for
neoclassical viscosity. In Sec. V we study saturation of insta-
bilities considered in Sec. IV. In Sec. VI we analyze both the
fast and slow zonal-flow instabilities of monochromatic
wave packet. The results of the article are discussed in Sec.
VII.

II. STARTING EQUATIONS

A. Description of turbulence

We assume that there is the simplest variety of the drift-
wave turbulence with the wave frequencies �k, which are
given in the rest frame by the dispersion relation �k=�k

�0�,
where �see, e.g., Ref. 1, and references therein�

�k
�0� =

kyV*

1 + k�
2 �s

2 . �5�

Here V* is the electron diamagnetic drift velocity defined by
the density gradient, k= �kx ,ky ,k�� is the wave vector, k�

2

=kx
2+ky

2, x is the coordinate along the minor radius of toka-
mak, y is the angle coordinate along the small azimuth, �

means the direction along the equilibrium magnetic field, and
�s is the ion sound Larmor radius, i.e., the ion Larmor radius
calculated for the electron temperature.

If there is the mean cross-field drift flow characterized
by the velocity V0, the expression for the wave frequency is
modified as follows �cf. Ref. 19�:

�k = kyV0 + �k
�0�. �6�

We describe the turbulence by means of the standard
wave kinetic equation of the form1

�Nk

�t
+

��k

�k
· �Nk − ��k ·

�Nk

�k
= �kNk −

��kNk
2

Nk
�0� . �7�

Here Nk is the drift-wave action density defined by1

Nk = �1 + k�
2 �s

2�2��k�2, �8�

�k is the Fourier component of the drift-wave electrostatic
potential �̃�r , t�, �k /2 is the linear growth rate of drift
waves. As explained in Ref. 1, the last term on the right-hand
side of Eq. �8� describes the drift-wave nonlinear damping
due to self-interaction of these waves, ��k is the nonlinear
broadening decay rate, Nk

�0� is the value Nk in the absence of
zonal flow, i.e., for V0=0 and Vt=0. The electrostatic poten-
tial of drift waves �̃�r , t� is related to their perpendicular

electric field Ẽ� by

Ẽ� = − ���̃ , �9�

where �� is the perpendicular gradient �with respect to the

equilibrium magnetic field�. It is assumed that, in the absence
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of zonal flow, the right-hand side of Eq. �7� vanishes. Then

��k = �k. �10�

We allow for that the field Ẽ� leads to the cross-field

drift velocity of particles ṼE defined by

ṼE =
c

B0
�b � ��̃� . �11�

Here c is the light speed and b=B0 /B0 is the unit vector
along the equilibrium magnetic field B0.

B. Description of mean flows

Turning to Ref. 5 and references therein �see also Chap.
19 of Ref. 10�, one can arrive at the following motion equa-
tions for poloidal and toroidal velocities Vp and Vt in the
presence of neoclassical viscosity:

�1 + 2q2� � Vp/�t + �ṼE · ��ṼEy = F	

/� , �12�

�Vt

�t
+ �ṼE · ��Ṽt − 4q�

�Vp

�t
= 0. �13�

Here F	

 is the poloidal neoclassical viscosity force given by

F	

 = − �	�Vp, �14�

�	 is a viscosity coefficient whose specified expression de-
pends on plasma collisionality degree, � is the plasma mass

density, and Ṽt is the wave part of the toroidal velocity. In
accordance with Sec. I, the overbar means the averaging over
the small-scale drift-wave oscillations. The factor 1+2q2 in
Eq. �12� describes the perpendicular inertia renormalization
due to the poloidal oscillations of the equilibrium magnetic
field. The term with q��Vp /�t in Eq. �13� is a consequence
of the same oscillations.

The terms with an overbar in Eqs. �12� and �13�, i.e., the
Reynolds stress force components, play the same role as the
external forces in similar equations of Ref. 5. They have
been taken in neglecting the poloidal oscillations of the equi-
librium magnetic field.

Explain also that Eq. �12� is the vorticity equation �the
current continuity equation� integrated over the radial coor-
dinate. In contrast to Eq. �12�, Ref. 19 started from the vor-
ticity equation where such an integration is not performed.

In accordance with Eq. �11�,

ṼEy =
c

B0

��̃

�x
. �15�

Then, similarly to Ref. 19,

�ṼE · ��ṼEy = − ��/�x , �16�

where the function � describing the Reynolds stress forces
�the Reynolds stress function�16 is given by

� =
c2

B0
2 � kxkyNk

�1 + k�
2 �s

2�2dk . �17�
As a result, Eq. �12� reduces to
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�Vp/�t − �1 + 2q2�−1 � �/�x = − �pVp, �18�

where

�p = �	 /�1 + 2q2� . �19�

Physically, Eq. �18� is the same as Eq. �2� of Ref. 19.
In order to calculate the left-hand side of Eq. �13�, let us

recall that in deriving the drift-wave dispersion relation
given by Eq. �5�, the perturbed ion parallel plasma velocity
has been assumed to be vanishing �cf. the discussion in Sec.
I�, i.e.,

Ṽ� = Ṽt + ��/q�ṼEy = 0. �20�

Therefore

Ṽt = − ��/q�ṼEy . �21�

As a result, in terms of V� and V0, Eq. �13� reduces to

�V�

�t
−

�

q
�1 + 4q2�

�Vp

�t
+

�

q

��

�x
= 0. �22�

Allowing for Eq. �18�, Eq. �22� can be represented as fol-
lows:

�V�/�t − 2�q � Vp/�t = − ��Vp, �23�

where

�� = ��	 /q . �24�

The term with �q in Eq. �23� proves to be unimportant for
our problem. Therefore we neglect it and use the following
simpler version of Eq. �23�:

�V�/�t = − ��Vp. �25�

Equations �18� and �25� together with Eqs. �17� and �2�
are starting ones in description of poloidal and toroidal
flows. Physically, Eq. �25� means the parallel motion equa-
tion. It is remarkable that this equation does not depend on
the Reynolds stress forces and has the same form as in the
theory of equilibrium rotation in the absence of the parallel
external force.

III. DERIVING DISPERSION RELATION OF ZONAL-
FLOW RESONANT INSTABILITIES

Similarly to Ref. 19, we take

�N̂k,V0,Vp,V�� 	 exp�− i
t + iqxx� , �26�

where N̂k is a small perturbation of Nk, V0, Vp, and V� are
also considered to be small perturbations, 
 and qx are their
frequency and radial wave vector. We linearize Eq. �7� allow-
ing for Eqs. �6� and �10�. Then, similarly to Ref. 19, we find

that, for 
�qxVg, the resonant and nonresonant parts of N̂k,
Nk

�r�, and Nk
�1�, respectively, are given by

N�r� = iqxkyV0R�k� � N�0�/�kx, �27�
k k

ownloaded 16 Mar 2006 to 143.107.134.72. Redistribution subject to 
Nk
�1� = kyV0

1

Vg

�Nk
�0�

�kx
. �28�

Here Vg���k
�0� /�kx is the drift-wave group velocity, R�k� is

the response function, which in our particular case 

�qxVg is defined by �see in detail Ref. 1�

R�k� = 1/��k. �29�

On the other hand, linearizing Eq. �17� and using Eqs. �27�
and �28�, we have

�̂ = �u − iqxDxx�V0. �30�

Here �̂ is the linear part of �. Thus, according to Eq. �30�,
the Reynolds stress force is governed by the mean cross-field
drift velocity, whereas, according to Eqs. �18� and �25�—by
the mean poloidal velocity Vp.

By analogy with Refs. 1 and 19, the value Dxx can be
called the coefficient of radial diffusion. It is given by

Dxx = −
c2

B0
2 � kxky

2R�k�
�1 + k�

2 �s
2�2

�Nk
�0�

�kx
dk . �31�

Similarly to Ref. 19, the value u can be called the parameter
of radial propagation of perturbations. It is defined by

u =
c2

B0
2 � kxky

2

�1 + k�
2 �s

2�2

1

Vg

�Nk
�0�

�kx
dk . �32�

Using Eq. �30�, Eq. �18� reduces to

�1 + 2q2��− i
 + �p�Vp − �iqxu + qx
2Dxx�V0 = 0. �33�

In addition, it follows from Eq. �25� that

− i
V� + ��Vp = 0. �34�

This equation couples the parallel velocity with the poloidal
one.

Using Eq. �34�, Eq. �2� yields

V0 = 
 i


��

−
�

q
�V� . �35�

Substituting Eqs. �34� and �35� into Eq. �33�, we arrive at the
zonal-flow dispersion relation

i
�1 + 2q2��− i
 + �p� − qx�iu + qxDxx�
i
 −
�

q
��� = 0.

�36�

It can be seen from Eq. �35� that, due to the neoclassical
viscosity, the zonal-flow dispersion relation proves to be qua-
dratic with respect to the perturbation frequency 
. Appear-
ance of the second root for 
 is an indication of a new type
of zonal-flow instabilities. As will be shown below, just this
instability leads to generation of considerable toroidal zonal
flow.

The value �� can be considered as a small parameter of
order � /q �see Eq. �24��. Therefore, the roots of Eq. �36� can
be separated into “large” and “small” ones, i.e., 

= �
1 ,
2�, where 
1 and 
2 are the large and small roots,

respectively.
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IV. ANALYSIS OF RESONANT ZONAL-FLOW
INSTABILITIES

A. Poloidal-flow instability

The large root of Eq. �36� is found by taking ��→0.
Then Eq. �36� reduces to

�1 + 2q2��− i
1 + �p� − qx�iu + qxDxx� = 0. �37�

Hence, we obtain

Re 
1 = − qxu/�1 + 2q2� , �38�

Im 
1 = − �p + qx
2Dxx/�1 + 2q2� . �39�

One can see that these relations coincide with those found in
Ref. 19 if one substitute 1+2q2→1. In accordance with Ref.
19, they describe generation of poloidal flow due to negative
perpendicular viscosity related to the drift-wave turbulence1

and their radial transport with the group velocity propor-
tional to the parameter of the radial propagation. Such a gen-
eration takes place for not too strong neoclassical viscosity19

�	 � qx
2Dxx. �40�

In the opposite case of

�	 � qx
2Dxx, �41�

the instability is suppressed by the neoclassical viscosity.
Turning to Eq. �25�, one can find that, in the presence of such
instability, the toroidal velocity Vt proves to be small com-
pared with the poloidal one, Vp,

Vt/Vp � �/q . �42�

Therefore, this instability can be called the poloidal-flow in-
stability.

B. Toroidal-flow instability

The small root of Eq. �36� is obtained by the limiting
transition


 � �p. �43�

Then Eq. �36� reduces to

i
2��	 − qx�iu + qxDxx�� +
�

q
��qx�iu + qxDxx� = 0. �44�

In accordance with previous discussion, one can see that

2�0 only in the presence of neoclassical viscosity, ���0.

One has from Eq. �44�

Re 
2 = − 
 �

q
�2

�	
2 qxu

��	 − qx
2Dxx�2 + �qxu�2 , �45�

Im 
2 = 
 �

q
�2

�	qx
2Dxx

�	 − qx
2Dxx − u2/Dxx

��	 − qx
2Dxx�2 + �qxu�2 . �46�

According to Eq. �46�, the perturbations considered are un-
stable for

�	 � qx
2Dxx + u2/Dxx. �47�

The unstable perturbations correspond to the toroidal-flow

instability. It can be seen from a comparison of Eq. �47� to

ownloaded 16 Mar 2006 to 143.107.134.72. Redistribution subject to 
Eq. �41� that such an instability takes place only in the con-
dition when the poloidal-flow instability is suppressed. Thus,
we conclude that neoclassical viscosity, suppressing the
poloidal-flow instability, leads to the toroidal-flow instability.
The growth rate of the latter one is small compared with that
of the first one as �� /q�2,

Im 
2/Im 
1 � ��/q�2. �48�

It can be seen from Eq. �45� that, as in the case of the
poloidal-flow instability �cf. Eq. �38��, the unstable toroidal-
flow modes are radially transported with the group velocity
proportional to the parameter of radial propagation u. Simi-
larly to the growth rate, this transport is weakened in com-
parison with the case of poloidal-flow unstable modes as
�� /q�2.

Meanwhile, the parameter �� /q�−2 is well known in the
theory of neoclassical resistive modes.10 It describes the
above-mentioned neoclassical inertia renormalization pre-
dicted in Ref. 6 �see also Ref. 7� and studied in detail in
Refs. 8 and 10 and a series of other papers cited in Ref. 10.

For sufficiently large �	, �	� �qx
2Dxx ,qxu�, we find from

Eq. �44�


2 = qx
 �

q
�2

�u − iqxDxx� . �49�

Hence we obtain the following simplified version of Eqs.
�45� and �46�:

Re 
2 = − ��/q�2qxu , �50�

Im 
2 = ��/q�2qx
2Dxx. �51�

One can see that formally these expressions do not contain
the neoclassical viscosity. This is explained by that they are
obtained in the limit of infinite neoclassical viscosity. Equa-
tion �50� coincides formally with Eq. �38� if one makes the
substitution given by Eq. �4�, whereas Eq. �51� transits to Eq.
�39� if one makes the same substitution and omits �p.

Turning to Eqs. �39� and �46�, we conclude that there is
a “stability gap”

qx
2Dxx � �	 � qx

2Dxx + u2/Dxx. �52�

If the neoclassical viscosity coefficient �	 is in this gap, nei-
ther the poloidal-flow instability nor the toroidal-flow one do
not take place. It follows from Eq. �52� that the stability gap
is due to the radial transport of the perturbations.

V. NONLINEAR SATURATION OF RESONANT
TOROIDAL-FLOW INSTABILITY

In accordance with Ref. 19, in order to study nonlinear
saturation of zonal flow instabilities, we shall keep in the
expansion of the function �, given by Eq. �30�, terms
squared with respect to zonal-flow velocities. Then, using
Eq. �17�, Eq. �30� is modified as follows:

�̂ → �̂ + ��2�. �53�
�2�
Here � is given by
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��2� = bV0
2, �54�

where

b =
1

2

 c

B0
�2� Vg

−1ky
2kx

�1 + k�
2 �s

2�2

�

�kx

Vg

−1�Nk
�0�

�kx
�dk . �55�

Respectively, Eq. �33�, linear with respect to the velocities, is
substituted by a nonlinear equation of the form

�1 + 2q2�
�Vp

�t
− u

�V0

�x
− b

�V0
2

�x
+ Dxx

�2V0

�x2 = − �	Vp. �56�

This equation is complemented by Eq. �25�, which remains
linear with respect to zonal flow velocities.

In the limit of vanishing neoclassical viscosity, �	→0,
��→0, Eq. �34� yields V� =0, whereas Eq. �56� reduces to

�1 + 2q2�
�V0

�t
− u

�V0

�x
− b

�V0
2

�x
+ Dxx

�2V0

�x2 = 0. �57�

This equation describes nonlinear stage of the poloidal-flow
instability. One can see that the terms with b and Dxx in Eq.
�57� are of the same order for

V0 � qxDxx/b . �58�

This relation can be used for estimating the saturated poloi-
dal velocity. Then, using Eqs. �31� and �55�, we find the
estimate

V0 � Vg
qx


ky�
�*

�k
, �59�

where 
ky� is an effective ky of the drift-wave turbulence.
The slab-geometry version �q→0� of Eq. �57� has been

studied in Ref. 19 for obtaining the spatial form of the satu-
rated poloidal velocity profile. In contrast to Ref. 19, we will
use Eq. �56� for studying nonlinear stage of toroidal-flow
instability considered in Sec. IV.

Taking �	 to be sufficiently large, Eq. �56� in the case of
toroidal-flow instability reduces to

q2

�2

�V0

�t
− u

�V0

�x
− b

�V0
2

�x
+ Dxx

�2V0

�x2 = 0. �60�

This equation leads to the same estimate for the saturated
cross-field drift velocity V0 as Eq. �58�. Meanwhile, accord-
ing to Eq. �35�, in the case considered

V� = − �q/��V0. �61�

Therefore, we arrive at the estimate

V� �
q

�
Vg

qx


ky�
�*

�k
. �62�

Equation �60� is of the same structure as that of Eq. �57�.
Therefore, it can be analyzed similarly to Ref. 19.

Instead of x, we introduce the variable

x̂ = x + ��/q�2u0t , �63�
where u0 is a constant. Then Eq. �60� reduces to
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q

�
�2�V0

�t
+ �u − u0�

�V0

� x̂
− Dxx

�2V0

� x̂2 + b
�V0

2

� x̂
= 0. �64�

The instability is saturated for �V0 /�t→0. In this case Eq.
�64� yields

�u − u0�V0 − Dxx
�V0

� x̂
+ bV0

2 = C , �65�

where C is an integration constant.
Similarly to Ref. 19, Eq. �65� has the solution

V0 =
1

2
�V01 + V02 + �V01 − V02�tanh
−

x̂

�
�� , �66�

where V01 and V02 are the values of V0 for x→ ��, respec-
tively,

� = 2Dxx/�b�V01 − V02�� . �67�

In terms of V01 and V02, the constant C is given by

C = − bV01V02, �68�

whereas the difference u−u0 is involved in the problem by

V02 + V01 = − �u − u0�/b . �69�

One can see that, allowing for Eq. �61�, the estimate for V�

given by Eq. �62� is compatible with Eq. �66� for ��1/qx,
V01−V02�V0.

VI. NEOCLASSICAL ZONAL-FLOW INSTABILITIES OF
MONOCHROMATIC DRIFT-WAVE PACKET

A. Starting equations

Studying instabilities of the monochromatic drift-wave
packet, one can start from Eqs. �33�–�35� neglecting the co-
efficient of radial diffusion. Then Eq. �33� reduces to

�1 + 2q2��− i
 + �p�Vp − iqxuV0 = 0. �70�

In addition, similarly to Ref. 24, the parameter of radial
propagation of perturbations u should be modified by substi-
tuting in the integrand of the right-hand sides of Eq. �32�

1

Vg
→ −

qx


 − qxVg
. �71�

Then Eq. �32� is transformed to

u = − qx
c2

B0
2 � kxky

2

�1 + k�
2 �s

2�2

�Nk
�0�/�kx


 − qxVg
dk . �72�

Now, similarly to Ref. 24, we integrate here by parts over kx

and take

Nk
�0� = Nk0

��k − k0� . �73�

Then Eq. �72� reduces to

u =
kyqx

2V*�s
2

c2Nk0

B0
2




�
 − qxVg�2
 �Vg

�kx
�

k=k0

. �74�
Substituting Eq. �74� into Eq. �70� leads to
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�
 − qxVg�2
1 +
i�p



�Vp = − �2V0, �75�

where

�2 = �0
2/�1 + 2q2� , �76�

�0
2 = − qx

2 ky0

2V*�s
2

c2Nk0

B0
2

�Vg

�kx
. �77�

Neglecting the toroidal inertia renormalization, 1+2q2

→1, neoclassical viscosity, �p→0, and the parallel flow ve-
locity, V�→0, Eq. �75� reduces to that found in Ref. 24. Then
the value �0 means the growth rate of instability of hydro-
dynamic type leading to generation of poloidal flow, pointed
out in Ref. 24. Allowing for the toroidal inertia renormaliza-
tion and neglecting the neoclassical viscosity, one reveals
physically the same instability described by the dispersion
relation

�
 − qxVg�2 = − �2. �78�

According to analysis of Ref. 24, the instability condition,
�0

2�0, means

1 − 3kx0
2 �s

2 + ky0
2 �s

2 � 0. �79�

Therefore, the instability is possible only for not too large
kx0.

Using Eqs. �34� and �35�, Eq. �75� results in the general
zonal-flow dispersion relation of the monochromatic drift-
wave packet of the form

�
 − qxVg�2
1 +
i�p



� = − �2
1 +

i�

q

��� . �80�

In contrast to Eq. �36�, squared with respect to 
, Eq. �81� is
the cubic one. The cubicity is due to allowing for the term
with ��, i.e., the parallel plasma motion.

B. Understanding the mechanism of zonal-flow
instabilities of monochromatic drift-wave packet

1. Transformation of driving force of zonal-
flow instabilities

Turning to Eqs. �77� and �78�, the expression �0
2 can be

called the driving force of zonal-flow instabilities of the
monochromatic drift-wave packet. Meanwhile, Eq. �77� has
a rather complicated form. Moreover, it contains in the de-
nominator the factor �s

2, so that there is a mathematical prob-
lem to transit to the limit �s

2→0. In order to find out this
problem, we should express the value �Vg /�kx in its explicit
form. Turning to Eq. �5�, we obtain

Vg �
��k

�0�

�kx
= −

2V*�s
2kxky

�1 + k�
2 �s

2�2 . �81�

The subscript “0” at the wave vector is omitted for simplic-
ity. Therefore,

�Vg

�kx
= − 2V*�s

2ky�1 + �s
2�ky

2 − 3kx
2��

�1 + k2 �2�3 . �82�

� s
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Using Eq. �82�, one can see that, for �s
2→0, the right-

hand side of Eq. �77� looks as the expression of type “0/0,”
so that �s

2 in the denominator and the nominator are mutually
cancelled. Then, for arbitrary k�

2 �s
2, Eq. �77� takes the form

�0
2 =

c2qx
2ky

2

B0
2

1 + �s
2�ky

2 − 3kx
2�

�1 + k�
2 �s

2�3 Nk. �83�

In particular, in the approximation �s
2→0 corresponding

to the case of nondispersive primary wave and nondissipa-
tive zonal flow, Eq. �83� reduces to

�0
2 = c2qx

2ky
2Nk/B0

2. �84�

In the same approximation, one has 
−gxVg→
. Then, in
the slab-geometry approximation, 1+2q2→1, Eq. �78� tran-
sits to


2 = − �0
2 � − c2qx

2ky
2Nk/B0

2. �85�

This relation can be called the standard zonal-flow dispersion
relation of hydrodynamic type.

2. Analogy with linear ideal MHD instabilities

According to Ref. 10, the standard linear ideal MHD
�magnetohydrodynamic� instabilities are characterized by the
dispersion relation

�2 = − �MHD
2 , �86�

where � is the mode frequency and �MHD is the growth rate
defined by equilibrium plasma parameters and the concrete
type of instability. Comparing Eq. �85� to Eq. �86�, we con-
clude that the zonal-flow instability of hydrodynamic type is
an analog of the ideal MHD instabilities.

3. Deriving the standard zonal-flow dispersion
relation of hydrodynamic type by the approach of
convective-cell theory

Turning to Eq. �4.44� of Ref. 28, one obtains


 �

�t
+ V*

�

�y
��˜ +

c

B0

��

�x

��˜

�y
= 0, �87�

��

�t
−

c

B0
� ��˜

�x

��˜

�y
� = 0. �88�

Here � is the zonal-flow electrostatic potential related to the
velocity V0 by

V0 = �c/B0� � �/�x , �89�

whereas �˜ is the drift-wave electrostatic potential in the
presence of the zonal flow. The angular brackets 
¯� mean
averaging over the drift-wave oscillations.

We analyze Eqs. �87� and �88� by analogy with Ref. 2.
Then we take the function � in the form

� = �0exp�− i
t + iqxx� + c.c., �90�

where c.c. is the complex conjugative. The function �˜ is

represented as follows:
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�˜ = �˜0exp�− i�t + ik · r� + �+exp�− i�� + 
�t + i�k · r

+ qxx�� + �−exp�− i�
 − ��t + i�qxx − k · r�� + c.c.

�91�

Here �˜0 is the amplitude of the unperturbed drift-wave elec-
trostatic potential, whereas the values �+ and �− are the
upper and lower side-band harmonics of the perturbed elec-
trostatic potential, respectively.

We find from Eq. �88�

i
�0 +
c

B0
ky��2kx + qx��˜0

*�+ + �2kx − qx��˜0�−� = 0.

�92�

Similarly, Eq. �87� results in

�+ = i
c

B0

qxky�0�˜0

� + 
 − kyV*
, �93�

�− = − i
c

B0

qxky�0�˜0
*


 − � + kyV*
. �94�

Substituting Eqs. �93� and �94� into Eq. �92� yields the zonal-
flow dispersion relation


 +
1

2

 c

B0
�2

ky
2qxNk
 2kx + qx

� + 
 − kyV*
−

2kx − qx


 − � + kyV*
� = 0.

�95�

Here, in accordance with Eqs. �8� and �91�,

Nk = 2�˜0
*�˜0. �96�

Now we allow for that, in the approximation �s
2→0, the

drift-wave dispersion relation, Eq. �5�, reduces to

� = kyV*. �97�

Using Eq. �97�, Eq. �95� transits to Eq. �85�.

C. Effect of neoclassical viscosity on poloidal-flow
instability

1. Dissipative neoclassical poloidal-flow instability

Allowing for neoclassical viscosity and neglecting the
parallel velocity, Eq. �80� yields

�
 − qxVg�2�1 + i�p/
� = − �2. �98�

For sufficiently large �p, �p�
, Eq. �98� reduces to

�
 − qxVg�2 − i
�0
2/�	 = 0. �99�

Then we find that in the case of sufficiently large radial
transport, qxVg��0

2 /�	, there is a zonal-flow instability char-
acterized by the relations

Re 
 = qxVg, �100�

Im 
 =
��0�
�2


 �qxVg�
�	

�1/2

. �101�

In the case of negligibly weak radial transport, qxVg
�
, Eq. �98� reduces to
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2 + i�p
 = − �2. �102�

For �p�
, instead of Eqs. �100� and �101�, one has


 = i�0
2/�	. �103�

Equations �100�, �101�, and �103� show that for strong
neoclassical viscosity the hydrodynamic instability, pointed
out in Ref. 24, transits to a dissipative one. In other words,
the strong neoclassical viscosity does not completely sup-
press the instability studied in Ref. 24, but leads to decreas-
ing its growth rate.

2. Analogy with linear ideal-viscous instabilities

According to Ref. 10, in the presence of neoclassical
viscosity, the dispersion relation for the linear MHD insta-
bilities, Eq. �86�, is substituted by

�2 + i�p� = − �MHD
2 , �104�

which is similar to Eq. �102�. For �p��MHD Eq. �104� re-
duces to the dispersion relation

� = i�MHD
2 /�p, �105�

describing the linear ideal-viscous instabilities. Comparing
Eq. �103� with Eq. �105�, we conclude that the nondispersive
dissipative zonal-flow instability is an analogue of the linear
ideal-viscous instabilities.

D. Neoclassical toroidal-flow instability of
hydrodynamic type

Allowing for toroidal velocity, it follows from Eqs. �75�,
�34�, and �35� that for sufficiently strong neoclassical viscos-
ity:

�
 − qxVg�2 − i
�0

2

�	


 + i

�2

q2�	� = 0. �106�

Hence it can be seen that dissipative zonal-flow instability
described by Eqs. �100�, �101�, and �103� takes place for

�� � �0. �107�

In the opposite case, when

�� � �0, �108�

Eq. �106� reduces to

�
 − qxVg�2 = ��/q�2�0
2. �109�

This dispersion relation transits formally to Eq. �78� in the
substitution given by Eq. �4�. It describes the neoclassical
toroidal-flow instability of the hydrodynamic type. This in-
stability corresponds to generation of considerable toroidal
velocity.

E. Generalization to the case of arbitrary
nondispersive drift-wave spectra and nondispersive
zonal flows

The main physical results of the present section are valid
not only in the case of monochromatic drift-wave packet but
also in the case of arbitrary nondispersive drift-wave spectra

2
and nondispersive zonal flow, i.e., for the case �s →0. In
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order to show this fact, we note that, in the case �s
2→0 and

arbitrary drift-wave spectra, one has, instead of Eq. �74�,

u = −
c2qx

B0
2

� ky

2Nkdk . �110�

Using Eq. �110�, one can obtain, instead of Eq. �84�,

�0
2 =

c2qx
2

B0
2 � ky

2Nkdk . �111�

By means of Eq. �111� one can generalize all preceding re-
lationships containing �0

2 for the case of arbitrary spectra.

VII. DISCUSSION

The analysis of this article shows that existing theory of
zonal flows in tokamaks was incomplete since it ignored the
combined effect of neoclassical viscosity and toroidal flow
velocity. We have generalized it for the case of the standard
drift waves. Let us summarize the main points of our ap-
proach.

We have used the standard wave kinetic equation for the
broad-spectrum drift-wave turbulence in the assumptions
that the wave frequency is shifted due to the mean �averaged�
cross-field drift velocity �see Eq. �6��. In description of mean
flows we have turned to the motion equations in the presence
of neoclassical viscosity derived in Ref. 5. One of them is the
vorticity equation, integrated over the radial coordinate and
the second is the toroidal motion equation. Then we have
assumed that the external forces entering the approach of
Ref. 5 are the Reynolds stress forces due to the drift-wave
turbulence. These forces are expressed in terms of a single
Reynolds stress function similar to that of the two-
dimensional theory.1,19 Similarly to Ref. 5, we have shown in
Sec. II that, instead of the toroidal motion equation, it is
more convenient in our problem to use the parallel motion
equation: since the parallel Reynolds stress force vanishes,
the latter proves the same as in the theory of equilibrium
plasma rotation in the absence of the parallel external force.
The effects of neoclassical viscosity, introduced in Sec. II,
have been incorporated in Sec. III into the zonal-flow disper-
sion relation, Eq. �35�, derived by the standard approach pre-
sented, in particular, in Refs. 1 and 19.

It is significant for our problem that the mean cross-field
drift velocity differs from the poloidal velocity. This differ-
ence results in that the parallel velocity enters the vorticity
equation. On the other hand, the parallel velocity is coupled
with the poloidal velocity by the parallel equation of motion.
The combined effect of the turbulence and the neoclassical
viscosity leads to the new type of the zonal flow instabilities.
Formally, it manifests itself in the zonal-flow dispersion re-
lation, which, according to Eq. �36�, becomes quadratic with
respect to perturbation frequency, contrary to the theory ne-
glecting the neoclassical viscosity, where it is linear.

Physically, the new type of the instability corresponds to
generation of toroidal flow. Equations given in Sec. III show
that this generation is a process slower than possible genera-
tion of the poloidal flow. Mathematically, this means that the
roots of our zonal-flow dispersion relation are well separated

in the amplitude, so that the results of the theory neglecting
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the neoclassical viscosity, presented in Ref. 19, remain un-
changed. They are briefly summarized in Sec. IV where it is
emphasized that the inclusion of the toroidal velocity into the
analysis of Ref. 19 does not change the poloidal velocity and
that the toroidal velocity remains to be sufficiently small.
Therefore, the instability studied in Ref. 19 was called in
Sec. IV the poloidal-flow instability. Subsequently, the main
thrust of our analysis is the smaller root of our dispersion
relation, given by Eqs. �45� and �46� or, for sufficiently
strong neoclassical viscosity, by Eqs. �50� and �51�, describ-
ing generation of the toroidal velocity. The previous equa-
tions show that the growth rate of the toroidal-flow instabil-
ity of the broad-spectrum drift-wave turbulence is small
compared with that of the poloidal-flow instability as the
parameter �� /q�2 governing the neoclassical inertia renor-
malization. In this context, the toroidal flow instability is
similar to the linear neoclassical resistive modes.6–10

Studying in Sec. V nonlinear saturation of the toroidal-
flow instability, we have used the fact that both the linear and
nonlinear parts of the Reynolds stress depend only on the
mean cross-field drift velocity, see Eqs. �53� and �54�. Then
the nonlinear evolution equation for this instability, similarly
to that for the poloidal-flow instability, can be expressed in
terms of the cross-field velocity. Such an equation has math-
ematically the same solution as that found in Ref. 19 with the
neoclassical inertia renormalization, see Eq. �66�. This solu-
tion shows that, though the evolution process is rather slow,
the saturated toroidal velocity proves to be essentially larger
than the saturated cross-field drift velocity. It can be esti-
mated by means of Eq. �62�.

A rather many-sided problem is the topic of zonal-flow
instabilities of the monochromatic drift-wave packet consid-
ered in Sec. VI. The traditional approach to studying this
topic is the approach of convective-cell theory.2 Meanwhile,
Ref. 24 studied it by means of the approach of wave kinetic
equation.25 Thereby, this topic lies at the junction of the two
ideologies appealing to the above-mentioned approaches.

It is evident that the results of Ref. 24 can be found from
those of Ref. 2 by means of corresponding limiting transi-
tion. At the same time, for a better understanding of the
mechanism of the previous instabilities, it seemed to be rea-
sonable to obtain these results directly by means of the
convective-cell theory approach. A part of Sec. VI was ad-
dressed to such an obtaining. Then we have found the sim-
plest version of zonal-flow dispersion relation given by Eq.
�95�, elucidating the so-called “driving force” of zonal-flow
instabilities given by Eq. �84�.

Appealing to the linear stability theory, we have ex-
plained that the poloidal-flow instability of hydrodynamic
type is similar to the ideal MHD instabilities. As the latter,
the poloidal-flow instability does not suppressed by neoclas-
sical viscosity. Instead of this, if the viscosity increases, it
transits to the dissipative poloidal-flow instability similar to
the ideal-viscous instabilities. For sufficiently strong viscos-
ity, the dissipative poloidal-flow instability is changed by the
neoclassical toroidal-flow instability of hydrodynamic type.
Its growth rate is small compared with that of the poloidal-
flow instability of hydrodynamic type as � /q, that is ex-

plained by the neoclassical inertia renormalization.
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We have explained that the main physical regularities
pointed out for zonal-flow instabilities, driven by the mono-
chromatic wave packet, remain in force for arbitrary drift-
wave spectra if both the drift waves and the zonal flows are
nondispersive. In this context, the approximation of the
monochromatic wave packet can be considered as the sim-
plest model for studying the nondispersive zonal-flow insta-
bilities.

The drift waves described by Eq. �5� are the simplest
particular variety of small-scale oscillations of magnetized
inhomogeneous plasma.28 Analysis of neoclassical zonal-
flow instabilities driven by other types of drift waves in tor-
oidal systems can be a subject of following investigations.

Since the neoclassical viscosity is a result of toroidicity
and the linear instabilities in toroidal geometry are often
studied by means of ballooning representation,29,10 it seems
to be of interest to formulate a theory of zonal flow instabili-
ties in the basis of ballooning mode eigenfunctions. An im-
portant step in formulating such a theory has been made in
Ref. 21, where the approach of convective-cell theory has
been used, whose simplest version has been explained in
Sec. VI B 3. Our results are in correspondence with those
obtained in Ref. 21. At the same time, it seems to be of
interest to include the elements of the ballooning-mode ap-
proach into the trend of zonal flow theory dealing with the
wave kinetic equation.1 Such a problem can be a subject of
following studies.

As known, strong toroidal �and parallel� flow shear may
trigger a negative compressibility instability �a variety of the
Kelvin-Helmholtz �KH� instabilities� as originally studied in
Ref. 30 and later in Ref. 31 and other papers. It is then of
interest to estimate whether the toroidal zonal flows studied
in our paper are subject to such an instability. In order to
made such an estimation, let us turn to the instability crite-
rion derived in Ref. 30:

�V��Ls

�� + 1�vTi

�
9

8

. �112�

Here the prime is the radial derivative, Ls is the length of
magnetic shear, vTi

is the ion thermal velocity, �=Te /Ti is the
ratio of electron and ion temperatures. According to Eq. �26�,
�¯���qx. Estimating qx�1/Ln, where Ln is the characteris-
tic scale length of density inhomogeneity and taking Ls

�qR and ��1, Eq. �112� yields

V�/vTi
� Ln/qR . �113�

Now we turn to estimation for V� given by Eq. �62�. Then
one can find

V� � V*q/� . �114�

Substituting Eq. �114� into Eq. �113� and allowing for V*

��ivTi /Ln, where �i is the ion Larmor radius, we arrive at
the KH instability condition

�i

r
�

Ln
2

�qR�2 . �115�

This condition can be satisfied in the edge plasma, where Ln
is sufficiently small. This analysis shows that the KH insta-
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bility of the toroidal zonal flows in the edge plasma can be a
subject of following investigations.

Studying in Sec. V the nonlinear saturation of resonant
toroidal-flow instability, we have taken into account the
squared nonlinear effect described by the function ��2� given
by Eq. �54�, expressed in terms of the parameter b given by
Eq. �55�. Meanwhile, if the nonperturbed drift wave spec-
trum Nk

�0� is even function of the radial wave number kr, the
right-hand side of Eq. �55� vanishes, so that b=0 and, as a
consequence, ��2�=0. Then, in contrast to Eq. �53�, one
should take into account the cubic nonlinear effect, i.e., sub-
stitute

�̂ → �̂ + ��3�, �116�

where ��3� is proportional to V0
3. Then one arrives at an evo-

lution equation similar to Eq. �55� with the substitution

b
�V0

2

�x
→ ĉ

�V0
3

�x
. �117�

Here ĉ is a parameter given by integral over k, similar to Eq.
�53�, but with the integrand even with respect to kr. This is
the essence of the saturation mechanism of the poloidal zonal
flow studied in Ref. 20, see also Ref. 32.

Let us explain how this saturation mechanism can be
generalized by inclusion of toroidal zonal flow. The fact is
that Refs. 32 and 20 have taken the mean cross-field drift
velocity V0 to be identically equal to the zonal-flow poloidal
velocity Vp, V0=Vp. Therefore, such a generalization should
consist in taking V0�Vp. Then one should complement the
vorticity equation of these references by the equation of par-
allel motion given by Eq. �25�. As a result, one could eluci-
date how Eqs. �64�–�69� are modified in the case of satura-
tion mechanism of Refs. 32 and 20. Such an elucidation can
be a subject of following investigations.
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