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There is a widespread belief that the classical small inhomogeneities which gave rise to all structures in

the Universe through gravitational instability originated from primordial quantum cosmological fluctua-

tions. However, this transition from quantum to classical fluctuations is plagued with important conceptual

issues, most of them related to the application of standard quantum theory to the Universe as a whole. In

this paper, we show how these issues can easily be overcome in the framework of the de Broglie–Bohm

quantum theory. This theory is an alternative to standard quantum theory that provides an objective

description of physical reality, where rather ambiguous notions of measurement or observer play no

fundamental role, and which can hence be applied to the Universe as a whole. In addition, it allows for a

simple and unambiguous characterization of the classical limit.
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Presently, there is a vivid discussion in the literature
about conceptual issues concerning the transition from
primordial cosmological quantum fluctuations to the
small classical inhomogeneities which gave rise to the
structures in the Universe, such as stars and galaxies
[1–9].

All cosmological pictures of structure formation, either
inflationary [10–14] or bouncing models [15], rely on the
fact that in its far past the Universe became so homoge-
neous and isotropic that only quantum vacuum fluctuations
of inhomogeneities could have survived. Initially, the
modes of the fluctuations of cosmological interest have
physical wavelengths much smaller than the curvature
scale of the background, and their quantum state is very
close to the Minkowski vacuum. In the course of cosmo-
logical evolution, the physical wavelengths of these fluc-
tuations become of the size of the curvature scale, at which
point they begin to feel the background gravitational field.
Once the wavelengths are much bigger than the curvature
scale, the fluctuations are believed to become classical.
They then give rise to the structures in the Universe,
through gravitational instability.

The quantum-to-classical transition of the fluctuations
is often seen as a result of the squeezing of the vacuum
state. It is argued that the squeezed state is somehow
equivalent to an element of an ordinary ensemble of
classical fields (see e.g. [1–7,12]). The argument often
invokes decoherence, which is assumed to lead to loss of
possible quantum interference for degrees of freedom
of interest, due to their interaction with other degrees
of freedom.

However, as pointed out by Sudarsky and collaborators
[8,9], the usual accounts of the quantum-to-classical tran-

sition have serious shortcomings. They argued that no
satisfactory justification has been given on why the quan-
tum state, which is translational and rotational invariant,
and which remains so during Schrödinger time evolution,
results in a noninvariant state. Even when there is suitable
decoherence, which suppresses interference between dif-
ferent noninvariant terms into which the quantum state can
be decomposed, it is not explained why one of these terms
is selected. According to standard quantum theory, a tran-
sition to a noninvariant state could only be obtained by
collapse, which is supposed to happen upon a measurement
by an external observer or measurement device. For in-
stance, in the case of a decaying atom emitting a photon
with a spherically symmetric wave function, one may
consider an external measurement device which will bring
about the collapse of the photon’s wave function so that it
will be detected in a particular direction. However, in the
cosmological context, there is something qualitatively
different: we are dealing with cosmological primordial
fluctuations which will give rise to all the structures in
the Universe. There can be no measurement device exter-
nal to it. All the structures, including measurement devices,
are supposed to emerge from the primordial fluctuations
themselves. As such, in the absence of an external device,
it is unclear how the translational and rotational invariance
of the quantum state of the fluctuations can be broken. This
is the problem with the cosmological scenario, already
acknowledged in [10] (p. 64), [11] (p. 348), and [13]
(pp. 386–387).
Sudarsky and collaborators [8,9,16,17] proposed to

solve this problem in the context of spontaneous collapse
theories, in which the collapse is an unambiguous, objec-
tive stochastic process. The whole framework is still under
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construction and may yield possible deviations from the
standard predictions.

In this paper, we will address the problem within the
de Broglie–Bohm theory [18–20]. In this theory, the
Universe is described by the universal wave function,
together with an actual configuration for gravity (e.g. an
actual three-metric) and a configuration for the matter (e.g.
particle positions or fields). The universal wave function
should satisfy the appropriate quantum cosmological wave
equation. Its role is to determine the dynamics of the actual
configuration, which is deterministic.

For the problem at hand, we will not consider the full
quantum cosmological framework, but instead restrict
ourselves to the effective theory for the perturbations in
terms of the Mukhanov-Sasaki variable, which represents a
gauge invariant combination of perturbations of the metric
and inflaton field [21]. Although the quantum state remains
translational and rotational invariant in this framework, the
actual de Broglie–Bohm field corresponding to the pertur-
bations, which is not present in the standard approach,
breaks this symmetry. The initial field configuration is
not determined by the theory, but in quantum equilibrium
it is distributed according to the quantum mechanical
distribution.

Also, the question of the classical limit is straight-
forward in the de Broglie–Bohm theory: the classical limit
is obtained whenever the actual field configuration evolves
approximately according to the classical equations. We
will see that the actual de Broglie–Bohm perturbations
reach the classical limit at the expected stage and that
the quantum equilibrium ensemble of these perturbations
then corresponds exactly to the classical ensemble that is
assumed in [1–6].

We will focus on the usual inflationary models with one
scalar field ’ moving under a potential. The background
spatial metric is assumed to be flat. Considering only scalar
perturbations (tensor perturbations could be considered in
a similar way), the metric up to first order can be written in
the longitudinal gauge as

ds2 ¼ a2ð�Þf½1þ 2�ð�;xÞ�d�2

� ½1� 2�ð�;xÞ��ijdx
idxjg; (1)

where� is the Bardeen potential in this gauge, and � is the
conformal time. There is also a perturbation of the inflaton
field �’ð�;xÞ. Because of the general relativity constraint
equations, there is only one degree of freedom left, which
can be described by the gauge invariant Mukhanov-Sasaki
variable yð�;xÞ given by

y � a

�
�’þ ’0

H
�

�
; (2)

whereH ¼ a0=a, with a the scale factor. A prime denotes
a derivative with respect to �.

It is convenient to introduce Fourier modes, through

yð�;xÞ ¼
Z d3k

ð2�Þ3=2 ykð�Þe
ik�x; (3)

where y�k ¼ y�k [due to the reality of yð�;xÞ]. The
Hamiltonian for these modes, as implied by general rela-
tivity, reads

H¼
Z
R3þ

d3k

�
pkp

�
kþk2yky

�
kþ

z0

z

�
pky

�
kþykp

�
k

��
; (4)

where z � 2
ffiffiffiffi
�

p
a’0=ðmPlH Þ, k ¼ jkj, and where p�

k is
the momentum conjugate to yk. Note that the integration is
restricted to half the number of possible modes (denoted
by R3þ) so that only independent ones are included. The
corresponding equations of motion are

y00k þ
�
k2 � z00

z

�
yk ¼ 0: (5)

Let us first analyze this classical theory. At the onset of
inflation, physical modes are assumed to have wavelengths
much smaller than the curvature scale, i.e., k2 � z00=z, so
that their equation of motion approximately reduces to that
of a free mode in Minkowski space-time. In many infla-
tionary models (like power-law inflation or slow-roll [14]),
the precise behavior of these physical modes at early times
(� ! �i, where �i is some initial time, with j�ij � 1) is
given by

ykð�Þ � e�ik�

�
1þ Ak

�
þ . . .

�
: (6)

The physical modes will grow larger during inflation and
will eventually obtain wavelengths much bigger than the
curvature scale, i.e., k2 � z00=z. At that stage, in many
models, the modes are approximately given by

ykð�Þ � Ad
k�

�d þ Ag
k�

�g 	 Ag
k�

�g; (7)

where �d > 0 and �g < 0. The first term represents the

decaying mode and the second one the growing mode,
which dominates in yk.
Let us now turn to the corresponding quantum theory.

The details of the quantization can, for example, be found in
[3]. In the functional Schrödinger picture, the state is awave
functional�ðy; y�; �Þ and satisfies a functional Schrödinger
equation determined by the quantum Hamiltonian corre-
sponding to (4). In the special case where the wave
functional is a product � ¼ �k2R3þ�kðyk; y�k; �Þ, like
for the vacuum, each mode wave function satisfies the
Schrödinger equation [note that we formally treat yk, y

�
k

as independent fields; equivalently, their real and

imaginary components can be used, defined by yk ¼
ðyk;r þ iyk;iÞ=

ffiffiffi
2

p
]:
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z0

z

�
@

@y�k
y�kþyk

@

@yk

��
�k:

(8)

For the ground state, the mode wave functions are given
by (see Ref. [3])

�k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

p jfkð�Þj
q exp

�
� 1

2jfkð�Þj2
jykj2

þ i

��jfkð�Þj0
jfkð�Þj �

z0

z

�
jykj2 �

Z � d~�

2jfkð~�Þj2
��
; (9)

with fk a solution to the classical mode equation (5), and

fkð�iÞ ¼ 1=
ffiffiffiffiffi
2k

p
, where j�ij � 1. This state is homo-

geneous and isotropic.
In order to pass to the de Broglie–Bohm approach,

we write �k ¼ Rke
iSk , with Rk ¼ j�kj, so that the

Schrödinger equation (8) yields the two real equations

@Sk
@�

þ @Sk
@y�k

@Sk
@yk

þ k2y�kyk þ z0

z

�
@Sk
@y�k

y�k þ yk
@Sk
@yk

�

� 1

Rk

@2Rk

@y�k@yk
¼ 0; (10)

@R2
k

@�
þ @

@yk

�
R2
k

�
@Sk
@y�k

þ z0

z
yk

��

þ @

@y�k

�
R2
k

�
@Sk
@yk

þ z0

z
y�k
��

¼ 0: (11)

We can then postulate an actual field yð�;xÞ, whose modes
obey the de Broglie–Bohm guidance equations

y0k ¼ @Sk
@y�k

þ z0

z
yk; y�0k ¼ @Sk

@yk
þ z0

z
y�k: (12)

By Eq. (11), these equations of motion guarantee that the
mode distribution R2

k ¼ j�kj2 is preserved over time (and
this is exactly the motivation to introduce these equations
of motion). That is, if the initial distribution of the field
modes is given by j�kj2, then it will be given by j�kj2 at
any time. The particular distribution R2

k ¼ j�kj2 plays the
role of an equilibrium distribution and is called the quan-
tum equilibrium distribution.

The guidance equations also follow from the Hamilton

equation y0k ¼ pk þ z0
z yk corresponding to the classical

Hamiltonian (4), with pk replaced by @Sk
@y�

k
. Equation (10)

then resembles the Hamilton-Jacobi equation correspond-
ing to the classical Hamiltonian, with an extra potential

Qk � � 1

Rk

@2Rk

@y�k@yk
; (13)

called the quantum potential.
Taking the time derivative of these equations and using

(10), we obtain

y00k þ
�
k2 � z00

z

�
yk ¼ �@Qk

@y�k
: (14)

This is just the classical equation of motion (5), modified
with an additional quantum force. The classical limit is
obtained when this quantum force is negligible.
For the ground state, the guidance equations are easily

integrated and yield

ykð�Þ ¼ ykð�iÞ jfkð�Þjjfkð�iÞj : (15)

Note that this result is independent of the precise form of
fkð�Þ and hence is quite general. In quantum equilibrium,
the probability distribution of the initial configuration
ykð�iÞ is given by j�kðykð�iÞ; y�kð�iÞ; �iÞj2.
For physical wavelengths and � ! �i, the behavior of

fkð�Þ is given by Eq. (6). As such,

ykð�Þ �
�
1þ ReAk

�
þ . . .

�
(16)

(in many inflationary scenarios, ReAk ¼ 0 and the first
order term disappears). So yk tends to be time independent
for j�j � 1. (This is compatible with the fact that the
de Broglie–Bohm field configuration is stationary for the
ground state of a quantized scalar field in Minkowski
space-time [19].) Hence, the time dependence of the
de Broglie–Bohm field configuration is completely differ-
ent from that of classical solutions, which oscillates for
j�j � 1 and k2 � z00=z; see Eq. (6).
When the wavelengths become much bigger than the

curvature scale (k2 � z00=z), the behavior of fkð�Þ is
approximately given by the growing mode[see Eq. (7)]
so that jfkj equals fk, up to a time-independent com-
plex factor. As such, the de Broglie–Bohm field con-
figuration approximately evolves according to the
classical field equation (5) so that the classical limit
has been attained.
The classical limit can also be investigated by exam-

ining the behavior of the quantum force, and it leads to
the same result. For the ground state (9), the quantum
force is given by

FQ;k � �@Qk

@y�k
¼ yk

4jfkj4
(17)

for the mode k. The classical force can be read from
Eq. (5) and the ratio is

FC;k

FQ;k
¼ �4jfkj4

�
k2 � z00

z

�
: (18)

For k2 � z00
z , this ratio is approximately �1 so that the

quantum force cancels the classical force and the mode
evolves freely. The guidance equations further restrict
the velocities to be zero so that the mode stands still.

For k2 � z00
z , this ratio becomes very big because of
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the growing mode so that the quantum force becomes
negligible with respect to the classical force. As a result,
the mode will evolve according to the classical equation
of motion. In this way, the transition from quantum to
classical behavior is clear and simple.

Let us now turn to the statistical predictions. First, let us
denote yð�;x; yiÞ, with yi a field on space, a solution to the
guidance equations such that yð�i;x; yiÞ ¼ yiðxÞ. As noted
before, if the initial field yi is distributed according to
quantum equilibrium, i.e., j�ðyi; �iÞj2, then yð�;x; yiÞ
will be distributed according to j�ðy; �Þj2. For such an
equilibrium ensemble, we can consider the two-point cor-
relation function

hyð�;xÞyð�;xþ rÞidBB (19)

¼
Z

Dyij�ðyi; �iÞj2yð�;x; yiÞyð�;xþ r; yiÞ (20)

¼
Z

Dyj�ðy; �Þj2yðxÞyðxþ rÞ; (21)

which is the usual expression for the correlation function,
and it can be calculated to yield

hyð�;xÞyð�;xþrÞidBB¼ 1

2�2

Z
dk

sinkr

r
kjfkð�Þj2; (22)

in the case of the ground state. Just as in the usual account,
this ensemble average should approximately be equal to
the spatial average of an actual field configuration for the
universe. This could be justified by adopting the usual
assumption that the spatial integral can be taken over a
larger volume than that over which the fields are correlated
[10–12].
To conclude, we have shown that the quantum-

to-classical transition is obtained in the context of the
de Broglie–Bohm theory. We have only considered scalar
perturbations. Similar results apply to tensor perturbations.
In this transition no appeal was made to decoherence. If at
some stage in this transition, there is decoherence in the
field basis, this will not destroy the classical behavior of
the fields.
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