
CBPF-NT-003/97

WWW Oriented Remote Job Submission, Monitoring and
Management over Internet�

by

G.A. Alvesa, M. Jo�lya;b, M. Mirandaa, A. Santoroa;b and M.H.G. Souzaa

aCentro Brasileiro de Pesquisas F��sicas { CBPF/LAFEX
Rua Dr. Xavier Sigaud, 150

22290-180 { Rio de Janeiro, RJ { Brazil

bFermilab
P.O.Box 500, Batavia, Il

60510, USA

Abstract

We present a system which allows job submission over Internet with reliable data
transfer using WWW graphical interface for job submission and monitoring and job man-
agement.

Key-words: Network; Parallel Processing; WWW; Computing Farms.

�Presented at CHEP97, Computing in High Energy Physics, Berlin.

{ 1 { CBPF-NT-003/97

1 Introduction

The growing need for computational resources in big collaborations like D� Zeus and
LHC leads to the use of resources located in di�erent sites. We have developed a system
that allows one to submit and monitor a job over Internet using a WWW Interface. The
system assumes there is a centralized server which receives job requests and sends them
over Internet to a production site. The centralized server also functions like a temporary
archiver for the input and output data.

The system is conceived to be used in any kind of job with the following characteristics:

� CPU intensive

� event oriented, with uncorrelated events

� 1 input and 1 output event �le (possible very large), besides calibration and control
�les

It is also assumed that the production site has been properly con�gured with cali-
bration, control and other data �les as well as any environment parameters. Also, the
executable program must be available in the production site.

The system can be used for any program with the characteristics mentioned earlier. It
can easily be customized, if required, to accommodate speci�c requirements of a partic-
ular system. Among the customizations that we can envision are elements for priorities,
permissions, and parameters for the job. However, in most cases, almost no customization
is required.

The system is composed of two main parts that will be explained in the following
sections: the submission and monitoring system and the core system which implements
the reliable data transfer and job control.

2 The Submission, Monitoring andManagement Sys-

tem

The submission and monitoring system is based on a WWW interface, as is the Manage-
ment interface.

The submission system is layered in a three-tier architecture: a HTML page that holds
the GUI, a CGI-BIN program that handles the requests generated by the user and makes
entries in a requisition �le and �nally a daemon that controls the job submission.

The user submits a job by connecting to the WWW server in the Central Server.
Information such as input data �le, job parameters, user identi�cation and priority are
sent to the server, where the CGI-BIN program generates an entry in a request �le.
The submission daemon constantly examines the requests and starts the job when there
is a production system available. Policies such as priority and user privileges can be
customized. For such customization, a routine has to be written. A template with a
FIFO policy is distributed with the system.

{ 2 { CBPF-NT-003/97

Once a job is selected for execution, the submission system starts the core system
which in turn starts the job on the designated site. At the end of the job, the user is
noti�ed by e-mail.

Every job submitted receives a JobId which is used for monitoring the job. To monitor
a job, the user connects to the status page of the WWW server. The monitoring system
will tell if the job is waiting, running or �nished. If the job is running, further information
can be provided such as number of events already processed, status of the farm, and others.
Also, it is possible to monitor the state of each CPU de�ned for a farm.

The management system allows one to check a speci�c node, add and remove nodes
from a farm. The core system allows recon�guration of the production site without having
to stop any running job. By using the management interface, the manager of the site can
add or remove nodes on the
y. When a node is removed, it �nishes the processing of the
event it is eventually working on, and then it is removed from the farm.

3 The Core System

The Core scheme, written in C++, implements IO Classes to deal with Event gathering,
transmission, and submission. The primary ingredients are the IO Objects which are
de�ned as entities that carry ONE Event. They have three main \properties": a Bu�er,
where Event data are stored, a Byte Count that gives the actual size of the Event and an
IO Channel which identi�es the IO device where data will be read/write, which can be �le
descriptors, pipes, Sockets, etc. We can think them as a Class, which in C�++ Language
will read:

class io_operations { // This class defines objects with signatures:

protected:

char *buf;

int io_chan; (or struct sockadd sock, for Sockets)

int count;

// and methods acting upon :

public:

io_operations (char *path, char *type); //Constructor

~io_operations (void); //Destructor

void set_buffer(char new_buf*, int new_count);

char *get_buffer(void) {return buf;}

int get_count(void) { return count;}

void get_dat(void);

void send_dat(void);

};

These objects will be doing some IO, either reading ONE event and storing it on
bu�er, or writing ONE event from the bu�er, from/to an IO device, which can be disk
�le, a Named Pipe or BSD Sockets.

{ 3 { CBPF-NT-003/97

As can be seen from the above code template, this information is protected (encapsu-
lated) from outside the Class scope. Methods are de�ned for a standard access to it, from
outside. They are:

� Every time a Class member is de�ned, a Constructor method is invoked. It does
all task of initialization, among them, an io channel is opened. The argument path
will indicate a location, for instance, a �le name together of the directory or can
be a pipe name or a BSD Socket structure. The second argument type will indicate
when we will be doing reading or writing tasks. (Actually, in our implementation,
we use di�erent Sub-classes for each task, all inheriting the properties of the basic
IO Class io operations).

In each case, the implementation is able, from these arguments, to make the correct
identi�cation of the device type and do everything needed to open it.

� Methods are de�ned to access encapsulated data in a standard protected way, for
instance, the Event bu�er: char *get buffer(void) .

� Also, Methods are de�ned to make the appropriate IO operation: get dat and
send dat . When reading, the bu�er will be dynamically allocated in virtual mem-
ory. Of course, these methods should be able to know about the event size. Also,
they must know how to deal with di�erent possibilities, other than experiment for-
mats, following the IO device types.

An example template that will read data in some prede�ned format from tape and
will write them to a Named Pipe, can be read as:

#include ... // whatever includes you need

#include "io_header.h" // IO Class definitions include file

main()

{

class io_operations tape1("/dev/rmt0", "READ");

class io_operations tape10("/local/userb/disk.dat", "WRITE");

tape1.options("E740");

tape10.options("PIPE");

for (int k = 0 ; k < event ; k++) {

tape1.get_dat();

cout << "Read phase byte count: " << tape1.get_count() << "\n";

tape10.set_buffer(tape1.get_buffer(), tape1.get_count());

tape10.send_dat();

}

}

{ 4 { CBPF-NT-003/97

With the above de�ned IO Classes, we construct IO Modules, which will be the build-
ing blocks of the system. They are basically IO loops, following pretty much the above
skeleton. There are two kinds of such modules:

� Client Modules read data available on Named Pipes or on disk �les. To read each
Event , an IO object will be created, which will hand over it to another IO object to
carry this event and write it to a Socket.

� Server Modules are always alive, watching for incoming data on Sockets. When
data is available on a socket, IO objects are created, again on an event basis. When
downstream Named Pipes are ready to accept events (which means that a Client
Module is ready to accept data on the other side of the pipe), then another IO
objects are activated to transmit them. This mechanism is the core of how the
system does work: each event in each module is dealt by 2 di�erent objects. When
input data is present, objects will store them in virtual memory. When downstream
IO is possible, then and only then, objects will be created to do data transmission.
All allocations will be free and all objects destroyed.

From the core point of view, there are 3 elements: Central site, Server site and nodes.

� Nodes are CPUs that actually run the programs (huge fortran programs consum-
ing several minutes of CPU time), expect input data (some hundreds of MB) and
produce output data of same order of magnitude. Data is made available on Unix
Sockets.

� At the Server site (a Unix machine) a �le, LOCAL RESOURCES, de�nes com-
pletely the farm. The same server programs above are used to read input data
(from the Central Site) on sockets, write it on named pipes, which are read by the
client programs and shipped out to nodes (de�ned in LOCAL RESOURCES) via
Unix sockets. On the other hand, the server programs listen to sockets for return-
ing data from nodes, write it on named pipes, which are read by client programs,
in the same way as before. Data are then shipped back to Central Site. In short,
there are 4 Client/Server programs running in this site (the same two binaries,
with di�erent parameters). They are all blocked on pipes and sockets, in absence
of incoming/outgoing data. Once nodes need data or outgoing data is present on a
socket, the transmission is made, on an event by event basis.

� Jobs are submitted from a Central Site, which may or may not be an Archive Site.

This model is very
exible for dealing with a variable
ux of data. We should remember
that each event is produced at a rate of (some) minutes/event and so, all overhead in
making IO on intermediate �fos and sockets is negligible. So, in a normal scenario, we will
have only one event transmitted over this system. Suppose now that several connections
are made, each from a location that runs Monte-Carlo jobs. Several of these requests can
arrive simultaneously. In this case, this
exibility shows its best qualities: all data will be
accepted by the Server, freeing the upstream systems to resume its jobs with new fresh

{ 5 { CBPF-NT-003/97

input. Data will then be transmitted from the Server to the Client through the �fo, on a
steady event by event basis.

The system can catch and recover from Internet time-outs, broken pipes and so forth,
without loosing events. The system also can sense and recover from node program crashes
automatically. In this case, only the faulty event is lost.

4 Virtual Farms

It is worth pointing out that the Central Manager and the Production site can be any
UNIX machine connected through Internet. This means that one can build a local System
using the available workstations. If the program's priorities are set low, one can build
a production system using the otherwise unused cycles of the workstations on this insti-
tution. The nodes of the system can also be spread over the world, making a "Virtual
Farm". Because it is assumed that the programs are CPU intensive, little load should be
put on the network.

5 Conclusion

A pilot system is running now at Fermilab, as part of the overall Monte Carlo simulation
e�ort of the D� experiment.

Prior experience in working with farms and farm's software, such as CPS [1] and
Funnel [2], in
uenced this project. In particular, many good ideas were borrowed from
Funnel.

This project added to the successful CPS and Funnel projects the following charac-
teristics:

� Object Oriented approach;

� Fault Tolerance in regard to network problems;

� GUI for job submission and monitoring and system management using WWW.

A last remark is that this system takes advantage of the lack of correlation between
event processing, and allows the use of unmodi�ed sequential application programs.

6 Acknowledgements

We would like to thank FINEP/Brazil and IBM/Brazil for �nancial support to build up
the computer farm in which this software was developed. Two of us, A.S. and M.J., would
like to thank the Computing Division/Fermilab for the hospitality.

{ 6 { CBPF-NT-003/97

References

[1] F. Rinaldo and S. Wolbers, Loosely Coupled Parallel Processing at Fermilab , Com-
puter in Physics, vol. 7, no.2 (1993) 184

[2] B. Burow, Funnel: Towards Comfortable Event Processing, Proceedings of Comput-
ing in High Energy Physics, CHEP95, Rio de Janeiro, 18-22 Sept. 1995

