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ABSTRACT

Let S be a vector subspace of the vector space {(E;F)
of all continuous mappings of a completely reqgular space E
to a real or complex Hausdorff locally convex space F. A
compact subset XK of E is a support of a seminorm p on S
if, whenever £ lying in S vanishes on some neighborhood of K
in E, then p(f) = 0. Note that p = |¢| may be the absolute
value of a linear form ¢ on S, or more generally the norm
p = ]|u]] of a linear mapping u of S into a normed space,
when we say that X .1is a support of ¢, or of u. Sufficient
‘conditions are given in order that, if p has some compact
support, then p has the smallest compact support (Proposition 14);
and, S being endowed with a locally convex topology, that every
continuous p -has the smallest compact support (Corollary 7).
Such results apply to the vector subspace clw) (u; F) of C€(U; F)
of all mappings of U +to F that are continuously m-differenti-
able, say in. the Hadamard, .or Fréchet, or other noteworthy senses,
‘where U is a nonvoid open subset of a real locally convex
space E; or even to a more general situation, subsuming known
examples with an additional nuclearity condition, such as in [10]
and other references in the Bibliography (Example 8).

1980 Mathematics Subject Classification: 46E10 Topological vector
spaces of continuous,differentiable or analytic functions.
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INTRODUCT&ON 0. Fix a nonvoid open subset U of Rr"
in=1, 2, .. 4.), and m=20,1, . . ., =. Let D(m)'(U) be
the vector space of all distribﬁfions of order at most m on U,
namely the dual space of the locally convex space D(m)(U) 9f
all continuously m-differentiable scalar valued functions on

(m) *

U with compact supports. Each element of D (U) has the

(™) (1)

smallest closed support in U. On the other hand, letting C
be the locally convex'space of all continuously m-differentiable
scalar valued functions on U, its dual space C(m)'(U) is
naturally identified with the vector subspéce of D(m)'(U) of
those elements whose smallest closed supports are compact,"If

m = 0, we have similar, but more general, considerations for
K(o) = D(O)(U), K'(u) = D(O)'(U) on a locally compact space U,

(0)* -
(U) on a completely

and for c(u) = ¢y, crw) =c

regular space U. In passing from R" to a real Hausdorff Iocally

convex space E, and a nonvoid open subset U of . E, the literal
(m) * '

analogues of ‘Uim)(U), 14 (U) wvanish if E is infinite dimen-

C(m)(U),>C(m)'(U), or even variants

sional; whereas those of
of them occuring in infinite dimensions but coinciding with them in
finite dimensions, remain meaningful. Since the method of |
continuously m-differentiable partitions of unit, . available on
Rp,i no longer is at our aisposél on an infinite dimensional E,

a slightly different approach is called for to prove existence of
the smallest compactAsupport. - The purpose of this article is to

- provide sufficient conditions for existence of the émallest

compact support (Proposition 4 and Corollary 7); énd to apply thém

to the continuously m-differentiable case, which presents itself

in some interesting variations (Example 8). We deal here with
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seminorms and linear mappings, but skip multilinear mappings,

and polynomials.

NOTATION 1. Unless stated otherwise, we denote by E a
completely regular space, by F a real or complex Hausdorff
locally convex space, by C(E; F) the vector space of all
continuous mappings of E to F endowed with the compact-open
topology, and by S a fixed vector subspace of C(E; F).
Usually p denotes a seminorm on S. We write C(E) = C(E;X)

if RK=R or X =C.

DEFINITION 2. A compact subset K of E is a support of

p, ©or supports p, 4if p(f) = 0 whenever f ¢ § and f£

vanishes on a neighborhood of K in E; then p is supported by

K. In case KX is the smallest support of p, then X is the
support of p. If ¢ if a linear formon S, then p = [¢]
is a seminorm on S, to which the present definition applies; we

then say that K is a support of ¢, or sugports ¢, and that

¢ is supported by XK. These considerations apply, more generally,

to a linear mapping u of § to a normed space, and p = [|u]l:

feS b {Jul®)]] &R

DEFINITION 3. A multiplier of S in C(E) is any f ¢ C(E)

such that £ SCS. Such multipliers form a subalgebra ., M(S) of
C(E) containing the unit 1. If S is a subalgebra of C(E)

containing the unit 1, -then M(S) = 8S.

PROPOSITION 4. Assume that ﬁRS) separates points of E in

the following sense: (sp) if x,., x., £ E, X # X, there is

0’ 71
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f e M(S) such that £ =i on a neighborhood of X in E,
for i =0, 1. Then, if p has some compact support, p has

the smallest compact support.

PROOF. We firstly show that M(S) separates compact

subsets of E in the following sense: (sc) if K Ky C E are

0’
disjoint nonvoid compact subsets, there is f ¢ M(S) such that
f =i on a neighbo;hood of Ki in E, for -i = 0, 1. In fact,
to begin with let_ué assume that K, = {xiA} is reduced to a

0’ choose ft e . M(S) such thatA

of t in BE, ‘and ft.= 1

. point x,. For every t e K

f£ = 0 on an open-neighborhood Vt

on a neighborhood of X in E. Seélect tyr o o os b€ Ko

such that K0(:\7tl Ue- « » LJth. and set f = ftl . . e ftn e M(S).

We see that f°= 0~ on a neighborhood of X, .in E, and

0

f =1 on a neighborhood of 3 ‘in E. Let finally Kl be

17 choose ft e M(S) such that

‘ft = 0 on a neighborhood of K,

neighborhood Vt of t in E. Select t

arbitrary. For every t e K
in B, and £ = 1 on an open

1’7 ° ¢ tn € Kl

such that KlC‘th L). .« . L)th, and set f =1 - (1~ftl) v e .
(l-—ft ) ¢ M(S). We see that £ =i on a neighborhqod'of Ki' for
i =;0? 1. This proves - (sc).

We secondly show that, if Kl'.° Y KAC.E are compact sup-
ports of p, then K = Kl FL.. .{WKn is a compact support of p.
We may assume n ='2. Let V be open in E containing K. Take
f € M(S) such that £ =0 on an open subseﬁ vy Qf E containing

K, - V; and f£ =1 on an open subset V2 of E containing K2 -V

1
(by discarding the trivial case when Kl -Vor Xk, -V is empty).

If then g ¢ S vanishes_on V, write g = fg + (1-f)g, notice

that fg ¢ S and £fg vanishes on the neighborhood V L)Vl of Kl
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in E, also that (1-f)g ¢ S and (l1-f)g vanishes on the neighbor-

hood VUV, of X, in E, to deduce that pl(g) < p(fg) +

2 2
p[(1-f)g] = 0, hence p(g) = 0. This proves that K is a compact
éupport of p.

Thirdly, let K be the nonvoid collection of compact
supports of p, and X the compact intersection of K. Let V.
be open in E containing K. By the finite intersection property,
there are K,, . ..., K € K such that X, N. . .NNKCV. Hence,

1 n 1 _ n
if f ¢ S8 vanishes on V, then p(f) =0, as Klr\. . .nKn- is

a compact support of p. Thus K is also a compact support of p,

cléarly the smallest one. QED

REMARK 5. We may ask if, in Proposition 4, it is enough to
assume that M(S) distinguishes points of E in the following

sense: (dp) if x4, X, € E, X, # X;, there is f & M(S) such

that £ =i at X for i =0, 1. The answer is negative. In

fact, every p is supported by any nonvoid compact subset of E

if and only if S has uniqueness of continuation in the sense that,

-. - .-

if fe S and _f-l(O) has a nonvoid interior, then f = 0. Suffi-

ciency is clear. As to necessity, let £, ¢ S, fo # 0, and fal(O)

0
have a nonvoid interior V. Choose a nonvoid compact subset K of
V, for instance reduced to a point.- Define p by p(f) =8[f(a)]
for f ¢ S, wher¢ ‘a € E is fixed so that fo(éf #0, ana B _is
a continuous;seminbrm“bﬁ"-F’*Chosen'éd.thét -B[fo(a)]f>ro. It
,foilows‘that P ,is_nét“SﬁPPOfted by K,,prdving-neceééity; Thus,
if S=A(U;X)C C(U; K) is the algebra of all analytic K-valued
functions on the connected nonvoid open subset U of IRP, or if

S =H(U; C)CC(U; C) is the algebra of all holomorphic C-valued
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functions on the connected nonvoid open subset U of Cn, then
in both cases S satisfies (dp), but not (sp), and Proposition 4

breaks down for such S, as a matter of fact.

LEMMA 6. Let wu: S — C(E;G) be a linear mapping, where
G is a real or complex Hausdorff locally convex space, and u

is local 'in the sense that, if £ ¢ S, the interior of f_l(O)

is contained in u(f)-l(O). If we endown S with the inverse
image topology Ey u of the compact-open topology on C(E;G),

then every continuous p has some compact support.:

PROOF. Continuity of p means that there are a compact
subset K of E and a continuous seminorm y on G such

that

p(f) < sup y[u(f) (x)]
- xXeX '

for £ e S. If feS vanishes on an open subset V of E containing K,

then u(f) vanishes on V too, hence on K, which implies p(f)

= 0. Thus K 1is a compact support of p. QED

COROLLARY 7. If S 1is endowed with the inverse image topology
by a local_linear mapping of a compact-open topology as in Lemma 6,
and M(S) separatés'points of E as in Proposition 4, then every

" continuous p has the smallest compact support.

EXAMPLE 8. We _know that there are some interesting variations
of the continuous m-differentiability concept, such as those in

the senses of Hadarmard, or Fréchet, or other noteworthy senses,
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-6-
or even wiﬁh additional nuclearity conditions (see [10] and
other references in the Bibliography). The following example
subsumes them éll. Let E,‘f be'real Hausdorff locally convex
spaces not reduced to their origins, U be a nonvoid open subset
of E, and m=20, 1, . . ., =. We denote By C(m)(U;F)' the
vector space of all mappings £: U — F that aré continuously
m-differentiable in the following sense:

l) £ is‘finitely m~differentiable, that is, for e#ery
vector subspace S of E of finite dimension, with S not
reduced to its origin and UNS nonvoid, we assume that the
restricﬁion'_f (UNS) is m-differentiable in the c1&ssica1
sense; hence we have the differential dkf: U — Las (kE;F)
with values in the vector space Las (kE;F) of all symmetric
- k=linear mabpings of Ek' to F, fqr k eTN,. k < m.

2) dkf maps U into the vector space Ls‘(kE;F) of
all continuous symmetric k-linear mappings of Ek to F, and
dkf: U — Ls(kE7F) is continuous if LS(kE;F). is endowed
with“the" e‘ompact—opeﬁ topology; for k XN, 'k < m:

We are going to deal with S = C(m)(U;F)C C(u;Fr). Set

I
\

G =1 L *E; F)

Sk e N, k <m
endowed with the cartesian product topoldgy, and consider 'the
.local.linear mapping’

aey eC (U;G)

k e N, k<m

g
Ee

£ec™uE) =

to introduce on C(m)(U;F) its compact-open topology of order
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which is the.inverse image by u of the compact-open topology
on C(U;G). We note that the algebra of multipliers of C(m)(U;F)
in C(U) contains each restriction .f(¢)|U, where ¢ € E' |is
a continuous linear‘form on E, and f‘s C(Q)CRﬁR). From
Corollary 7 and the Hahn-Banach theorem, we conclude tﬁat_every
continuous seminorm on C(m)(U;F) has the smallest compact
support.

The preceding situation is more gEnetal than the Hadamard
continuous m;differentiability. We.may réplacé‘condition 2) in
it by‘£he following more stringent requirement: |

2') The mapping
(x,t) ¢ UXE > asx)tX ¢ F

is continuous, for k € W, k < m.

Sometimes'we reéuire the Fréchet continuoﬁs m—differentiability,
whiéh»includes, among other réquiréments,_demahding the;pfeceding
conditiops 1) and 2), by en;arging the compact-opehftopoiogy on
Ls(kE;F) to its bounded-open topology, for k'e:N; k < m. We
can even go further and use conditions 1) and 2), with the
~;ompact—0penjtopqlogy on is(kE;ED ‘enlarged further to its
prqjective-inductive topology,_for' k e N, k < m. Cordllary 7
 and the HahnfBanach‘theorem still lead to the qonClusioh that
every continuous seminorm on each of these new spaces
_haé the Sméiiést:compéct support. | o

‘Even more generally, motivated bf examples in the Bibliography
involving the use of nuclearity, as in [10] for instance, consider

a vector subspace S of C(m)(U;F) so that M(S) contains
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each restriction’ £f(¢)|U, where ¢ ¢ E' is a continuous linear
form on E, and f & C(Q)GR;IU. Let D

k
in Ls(kE:F) by dk: C(m)(U;F) — Ls(kE;F), and endow vk

be the image of S

with a natural Hausdorff locally convex topology, for k € N,

k < m. Set

endowed with the cartesian product topology, and consider the
local linear mapping

u: f e S |- (ﬁ%—dkf) eC(U;G)

k € N, k<m
to introduce on S the inverse image-topology'by u of the
compact-open topology on C(U;G). Thus, as before, from
Corollary 7 and the Hahn-Banach theorem, we conclude that

every continuous seminorm on S has the smallest compact support.
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