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ABSTRACT

We propose that the phonons in *He obey a g-deformation of the Heisenberg algebra,
and give an algebraic interpretation for the polynomial expansion of the small momenta
phonon dispersion relation. Comparison with C'y experimental data shows that our spec-
trum reproduces the experimental one within less than 5% of discrepancy. .
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The superfluid properties of * He [1] are well described by Landau theory [2]; neverthe-
less, even for temperatures as low as 1°K there are still unsolved discrepancies between
theory and experiment. In Landau theory, the superfluidity follows from phonon and
roton elementary excitations [3]. The anomalous dispersion of phonon spectrum in *He,
w(p) = cop(1—7p?) (co is the sound velocity), was theoreticaly derived [4] and v estimated
to be positive. On the other hand, data from *He specific heat measurements fit to a
different expression for the dispersion of phonon spectrum and give a negative ~ for most
values of the pressure [5-6]. Negative v leads to an unstable phonon spectrum, which
is confirmed by experimental measurements of phonon lifetime in scattering of neutrons
[7]. In this letter we show that this difficulty can be overcome if we treat the phonons as
bosonic g-oscillators [8]. Using A, B and D values experimentally determined by fitting
the low-temperature phonon specific heat

C‘];honon — AT3 T BT5 T DT7 7 (1)

with measured specific heat data of * He[6] at the temperature range 0.14 < T < 0.86,
our model leads to unstable phonons for all the analysed values of the pressure.

Bosonic g-oscillators [8] are a generalization of the Heisenberg algebra obtained by
introducing a deformation parameter ¢. For ¢ > 1 [9], an ideal g-gas presents Bose-
Einstein condensation and the specific heat exhibits a A-point discontinuity [10], two
features connected to superfluidity [11]. On the other hand there have been interesting
indications that the continuum descriptions of physical quantities break down both in
a convergent fluid flow [12] and, more recently, in superfluid *He [13]. As a similar
breakdown has been observed in connection to deformed algebras [14], we are led to think
that they might have a role to play in the study of superfluidity.

Let us then consider the algebra generated by a, ™ and N satisfying

[Nv a+] =at ) [Nv Cl] =—a (2)
aat — g tata =q¢" (g €R)

Assuming that ¢ and a® are mutually adjoint, N = N* and the spectrum is non-
degenerate, the following representations of (2) were obtained [15] for ¢ > 1:

atln) = ¢"Pn+ 1]+ 1)
aln) = ¢ ]l —1) | (3)
Nln) = (nw+n)n),

where [n] = (¢" — ¢7")/(¢ — q¢~") and 1y is a real free parameter which goes to zero when
(2) becomes the usual Heisenberg algebra (¢ — 1). Note that only when vy = 0, N is the
usual particle number operator for the normalized vector state |n); otherwise the particle
number operator is N =N-y and 1 is a parameter that classifies the inequivalent
representations of the algebra (2) [15, 16, 17].

Generalizing previous results obtained for vy = 0 [18], in the Fock space spanned by
the vectors |n), we can express the above deformed oscillators in terms of the standard
bosonic ones, b and b*, according to

N 1— 1/2 N 1— 1/2
a = qu0/2 [ + 1/0] b 7 Cl+ — qy0/2 b+ [ + VO] (4)
N—|—1—1/0 N—|—1—1/0
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and it can be easily shown that
aat =¢°[N+1—wv) , ata=q¢°[N—w, (5)

where N — vy = bTbh. This shows that bosonic g-oscillators, in arbitrary representations
v and for real ¢ > 1, can be reinterpreted as standard bosonic oscillators.

We propose that the phonons in *He are described by a ¢-gas. Considering that our
model will be compared with the experimental results at the temperature range 0.14 <
T < 0.86 [6], where the rotons contribution is at most 0.5% of the total specific heat [6],
they will be treated as usual [3]. We take for the phonon gas the Hamiltonian

H = Z wiaia; = Z w; ([NZ] — qN"C) , (6)

7

where C = ¢~V ([N] — a¥a) is a Casimir operator of the algebra (2) and in the represen-
tations (3) one has

Cln) = ¢”[woln) . (7)
In (6) a; and af are the annihilation and creation operators of particles in levels ¢ with
energy w; and NV; is the number operator of particles in levels 7 plus v, which we are

assuming level dependent.
As the partition function factorizes for the above system the canonical potential is

Q= —% Z lnz e_ﬁ‘”"qyé[”] . (8)

where 3 = (kgT)™', with kp the Boltzmann constant.
The phonon anomalous dispersion relation is w(p) = cop(1 — ap?), with ¢, the velocity
of sound, and we propose the dispersion relation

62 p?/2m
w(p) =7 0’ = o (9)

1 1 4

with ¢ an algebraic dimensional constant, [6] = gr~ sec, and ¢ = ¢”. As a conse-
quence of the dimensionlesness of vy(p) it appears in (9) an energy scale, F), that we take
as Ky = kgT\, where T) is the temperature at which liquid * He undergoes a transition

cm

and becomes superfluid. Moroever, it seems natural to take m = mpg. since we have
for vo(p) the non-relativistic classical dispersion law. For small phonon momenta we can
expand our energy-momentum relation as

2.2 1
¢ Pw(p) =" eop(l — ap?) = copll = (0 = 6%)p* — (a6 — 5 8t =] (10)

We are thus presenting an algebraic interpretation to the usually ad-hoc introduced small
momenta phonon dispersion relation [3, 5, 6].

It follows from a straightforward calculation that the low-temperature ¢g-phonon spe-
cific heat per mole is given by

C‘g;quonon _ ATS + BTS T DT7 + GT9 + (11)
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where
8 (7 .4 2 2
i 2RBV o DR8IV 5 28k (§ o 446> = Tad?) V 7
©2h3c] ’ 2h3c) ’ 2h3ch
10 6 3 4 2 2
G - 15kE (—816°% + 110a” 4 243a6* — 2706%a*)V 00) (12)
272h3c)
with V the molar volume and
[n]e—y[n]
/ dy y" =t (13)
Z el

Using its usual dispersion relation, w,(p) = A+ (p — po)?/2u, where A is the energy gap,
po 1s the position of the energy minimum and p is the effective mass of the roton, the
roton contribution to the molar specific heat is:

2V 2 pg A2 3
roton _ (27r)3//:h3 s (1 ke T/ A+ J(kpT/A) ) /i (14)
B
and the total specific heat is
Cy = Cphomen 4 Cyeten (15)

Taking for the coefficients A, B and D the least-squares fits for A, B, and D in (1)
[6] of the measured specific heat data (analysis 2 in ref. [6]) and G = 0, we obtain for
q, «, 6 and cg the results listed in table I. The values of ¢ are derived from

Ing = 2mpad2ksT , (16)

which is a consequence of (9), and ¢g, « and 6 from relations (12). As the very large errors
in the 77 coefficients for the samples 10-16 [6] lead to a high inaccuracy in the derivation
of expression (16), we restrict our analysis to the samples 6-9 [6].

In table I we see that the values of ¢ increase with the pressure, and that the values
of ¢y are around 4% lower than the directly measured sound velocities [19]. These results
are obtained by least-squares fits of the specific heat data [6] with the expression (15),
considering terms up to 77 in Cphonon Since in our model higher powers of T are relevant,
in the second row of table II we show the results obtained considering terms up to 1
in (11) and taking A = 80 x 10* erg/mol K*, B = —21 x 10* erg/mol K¢ D =
83 x 10* erg/mol K® and G = —67.5x 10 erg/mol K'°. These values reproduce, within
5% of accuracy, the curve resulting from least-square fit of Cy data for sample 6 [6], with
Cy = AT? + BT® + DT + Ciptor (see Fig. 1). We see that the ¢q value is then more in
accordance with the experimental one. We note that for a given value of ¢, ¢y and the
parameters o and § are obtained directly from the values of A, B and D through relations
(12). The coefficient G of T? is crucial to show the consistency of our model. In fact,
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with the values of a, 6 and ¢ in the lower row of table II, the coefficient & calculated
from the last relation (12) is equal to —67.5 x 10* erg/mol K'°.

In summary, considering the phonons in *He as being described by a quantum ¢-gas in
a special representation of the Heisenberg algebra, we have shown the ¢-algebraic nature of
the polynomial expansion of the small momenta phonon dispersion relation. Moreover, our
estimated values of ¢y are in good agreement with the directly measured sound velocities.
To test the present model we have compared it with the available experimental data: our
spectrum reproduces the experimental one for the entire 0.14 < T" < (.86 range, within
less than 5% of discrepancy. Finally, we would like to stress that as a consequence of the
proposed dispersion relation (10), with only two free parameters (¢, 1) we have been able
to fit the experimental data with the three coefficients B, D and in G in the specific heat
expansion (11).
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