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Abstract

Bose-Einstein condensation is considered within the Tsallis generalized thermostatis-
tics as an illustrative case of a situation where interactions are inexistent in the Hamil-
tonian and the system evolves in a fractal space. The (1�q)=kT ! 0 asymptotic behavior
is studied.
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The Boltzmann-Gibbs statistics and its connection with thermodynamics are powerful
tools in theoretical physics to study situations where the following conditions are satis�ed
(i) the e�ective microscopic interaction is short-ranged or inexistent, (ii) the microscopic
memory is short-ranged or inexistent and (iii) the system evolves in a nonfractal space-
time. This is to say, whenever the extensive (additive) properties of thermodynamics
hold.

Whenever an Euclidean-like (nonfractal) space is involved, the ideal Bose-Einstein gas
(no interaction exists in the Hamiltonian) is the simplest exactly solvable continuous sys-
tem that has a phase transition. Therefore, it has its place in any course on statistical
mechanics including quantum statistics [1]. An elementary, but rigorous, calculation is
made in ref. [2] by controlling the di�erence between sums and integrals in the thermody-
namic limit. This phase transition is the well known Bose-Einstein condensation (most of
particles go to the zero momentum state). The Bose-Einstein condensation is a physical
situation in vogue nowadays because of important experimental advancements have that
ocurred recently [3].

Let us start by considering an ideal gas of particles that obey to the Bose-Einstein
statistics at temperature T and chemical potential �, for a large (hyper)volume V and a
large number of particles N1. The average number of particles is given by

N1 = n
(0)
1 + V

 
mkT

2��h2

!D=2
gD=2(e

�=kBT ): (1)

Here D is the dimension of the system and we assume D > 2 in order to have a non-
vanishing critical temperature; kB is the Boltzmann constant and �h = h=2� (h is the
Planck constant). The function gD=2 is de�ned as gD=2(y) =

P
1

n=1 y
n=nD=2. The quantity

n
(0)
1 � 1=(exp(��=kBT )� 1) is called the zero momentum state and can be macroscopi-

cally occupied. The phase transition happens as �! 0.
The occupation of the zero momentum state is of course the Bose-Einstein condensa-

tion. It occurs at temperature T � Tc1. The critical temperature Tc1 is given by

Tc1 =
2��h2

mkB

 
N1

�(D=2)V

!2=D

: (2)

where �(x) is the Riemann function. It is worthy to recall that, for T � Tc1, n
(0)
1 = 0;

for T � Tc1, � = 0; and that, for T = Tc1 + �, where � ! 0, n
(0)
1 / �, which could be

compared with the mean �eld approximation, namely �1=2.
The fraction of particles in the zero momentum state can be written

n
(0)
1

N1
= 1�

�
T

Tc1

�D=2
; for T � Tc1: (3)

Eqs.(1)-(3) is the more interesting set of results on the problem within the Boltzmann-
Gibbs thermostatistics. Some thermodynamic properties of an ideal gas in D dimensions
have been discussed in ref. [4]. Nevertheless, this formalism fails whenever the phys-
ical system includes (i) long-range force and/or (ii) long-memory e�ect and/or (iii) a
(multi)fractal space-time. In any of these cases, the system is expected to violate the
standard extensive properties.

More precisely [5], the di�culties and their consequences are classi�ed as follows:
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(i) For a relevant Euclidean-like space-time and if either the forces or the memory (or
both) are long-ranged, but we are interested in an equilibrium state, the Boltzmann-
Gibbs statistics is weakly violated, the formalism can be used to obtain an approx-
imate description. However, if we are interested in a meta-equilibrium state [6], the
Boltzmann-Gibbs description is strongly violated. Other formalism must be used.

(ii) For a relevant (multi)fractal space, the Boltzmann-Gibbs formalism is strongly vio-
lated again and other formalism is needed.

The explicit need for a nonextensive thermodynamics has been well known in cosmo-
logy, gravitation and astrophysics [7], magnetic systems [8], L�evy-like anomalous di�u-
sion [9], etc.

As a possible solution, Tsallis proposed a nonextensive thermostatistics in his pa-
per [10]. This formalism has already received some applications. Among them, let us
mention: Self-gravitating systems, Stellar polytropes, Vlasov equation [11, 6]; L�evy-like
anomalous di�usion [9, 12]; Simulated annealing [13]. Furthermore, its connection within
quantum statistics [14], quantum groups [15], quantum uncertainty [16], fractals [17, 18],
etc., has been established.

The generalized statistics relies on the so called Tsallis entropy, namely

Sq � �k
1�

P
R p

q
R

1� q
; (4)

where q 2 <; k is a positive constant and Sq recovers the standard form �kB
P

R pR ln pR,
in the limit q! 1.

Expression (4) has enabled various (nontrivial, though mathematically simple and
natural) generalizations of important properties such as ref. [14]

(i) The grand-canonical equilibrium distribution now becomes

pR =
[1� �(1� q)("R � �N)]

1

1�q

�q
; (5)

with the generalized grand-partition function consistently given by

�q(�; �) =
X
R

[1 � �(1� q)("R � �N)]
1

1�q ; (6)

where � � 1=kT > 0 and "R is the spectrum (R represents a set of given real
numbers).

(ii) The thermodynamics associated with Eq.(4) is invariant under Legendre transfor-
mations and preserves thermodynamic stability [19]; in particular, the fundamental
equation for open system is


q = �kT
�1�q
q � 1

1� q
: (7)

The q-expectation value of the particle number is given by,

Nq =
X
R

pqRN =
@
q

@�
= �kT

1

(�q)q
@�q
@�

: (8)
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(iii) The corresponding Hilhorst integral transformation of the grand-partition function
was obtained. In the same manner, the generalized distribution function as well as
the q-expectation values of some thermodynamic quantities were established. The
Hilhorst transformation (as discussed by Prato [20]) for the q-expectation value of
the particle number can be obtained in a closed form as

Nq =
�( 1

1�q
)

[�q(�)]
q

i

2�

I
C
dz(�z)

�1

1�q e�z�1(��(1� q)z; �)N1(��(1� q)z; �): (9)

Now, within this formalism, we study the Bose-Einstein system (no interactions in the
Hamiltonian) in a (non Euclidean) fractal space. The last fact makes necessary to use a
nonstandard Boltzmann-Gibbs statistics. The Tsallis formalism will be used, where the
information about the fractal dimension is kept in the parameter q [17].

The generalization of Eq.(1) is

Nq = n(0)q + V

 
mkT

2��h2

!D=2
Gq(D=2; �); (10)

de�ning

Kq(m;x; �) =
(1� q)m�x�(1=(1 � q))

�(1=(1 � q) + x�m)
< (kT � (1� q)(H� �N ))x�m >q;

where, < O >q is the q-expectation values of the operator O. As before, n(0)q is the
generalized occupation number of the zero momentum state and it is given by

n(0)q =
1X
n=1

1X
m=0

(n�)m

m!
Kq(m; 0; �); (11)

and

Gq(D=2; �) =
1X
n=1

 
kT

n

!D=2
1X
m=0

(n�)m

m!
Kq(m;D=2; �): (12)

According to Eq.(10) and Eq.(12), the critical temperature is obtained by requiring the
following expression to be satis�ed:

< (kTcq � (1� q)H)D=2 >q=

 
2��h2

m

!D=2
Nq

�(D=2)V
; (13)

which is the generalization of Eq.(2). We can also obtain the generalization of Eq.(3),
this is:

n(0)q
Nq

= 1�
< (kT � (1� q)H)D=2 >q

< (kTcq � (1� q)H)D=2 >q
: (14)

Furthermore, it is convenient to remark that the Eq.(13) for the critical temperature
is satis�ed whenever the generalized fraction of particles in the zero momentum state
vanishes (n(0)q =Nq = 0).
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Due to the mathematical di�culties associated with a generic values of q, let us from
now focus the q � 1 case. By using Eq.(7) from the ref. [21], Eq.(13) asymtotically
becomes

kTcq�1(Tcq)
2(1�q)=D

 
1 + (1� q)(D=2 � 1)

U1(Tcq)

kTcq

!2=D

= kBTc1: (15)

When T � Tc1, the internal energy U1 for a Bose-Einstein system is written as a function
of the temperature, namely

U1(T ) =
D

2
V
�

m

2��h2

�D=2
(kT )D=2+1�(D=2 + 1); (16)

for the same case, the thermodynamic potential is given by


1 = �V
�

m

2��h2

�D=2
(kT )D=2+1�(D=2 + 1):

So, as �1 = exp(��
1), the grand partition function is written as

�1 = exp

0
@V

 
mkT

2��h2

!D=2
�(D=2 + 1)

1
A : (17)

Evaluating Eq.(15), we obtain an equation for Tc1, and by inverting for Tcq, we have

Tcq =

"
1 � (1 � q)

�
D

2
+

2

D
� 1

�
�(D=2 + 1)

�(D=2)
N1

#
Tc1; (18)

whenever k = kB by the �rst order correction in (1� q). This approximation shows that,
if q < 1 the critical temperature decreases. According to Eq.(2) there exists an apparent
modi�cation on the density (i.e., if the average number of particles N1 is constant the
volume increases as q < 1) in the q! 1� limit . Now, we calculate

1

N1

@

@q

�
Tcq
Tc1

�
=

(D � 2)2

2D

�(D=2 + 1)

�(D=2)
; (19)

so, we remark that, the �rst derivative of Tcq with respect to q is positive for all values
of D > 2. In Fig.1 is depicted (solid line) the pro�le of the Eq.(19) as a function of the
D parameter; ( if V = `D, where ` is the side of a box in D dimensions) the quantity

N
2=3�2=D
1 Tc1(D)=Tc1(3) versus D (dashed line).
Summarizing, the standard results are recovered from the generalized results when

q = 1, as it should be. It is shown that, in the present approximation, the critical tem-
perature for the phase transition of the Bose-Einstein condensation is modi�ed whenever
the nonextensive thermostatistics is considered. Furthermore, the critical temperature
in other problems change as well if q 6= 1; for instance, in the canonical ensemble, the
self-dual planar lattice Ising ferromagnet within renormalization group calculation [22]
and a z-coordinated spin-12 Ising ferromagnet within molecular �eld approximation [23]
su�er modi�cations perfectly consistent to our result. In particular, all these theoretical
approaches provide a critical temperature which increases with q.

The author is very indebted to C. Tsallis for valuable discussions and to C. Tsallis, S.
A. Cannas, T. J. P. Penna and M. Muniz for their helpful comments on the draft version
of this paper.
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