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1 Introduction

Quantum groups [1-3] are a mathematical structure, also called Quasitriangular Hopf

algebras, that have attracted a great interest from physicists and mathematicians in the

last two decades; they are connected to q-oscillators [4,5], which are objects that satisfy

deformed Heisenberg algebras. The dynamical properties of q-oscillators and their relation

to anharmonic oscillators [6] have been studied by means of a Lie-algebraic approach [7].

The application of deformed algebras to physics has attracted much interest and they

have seen to be useful in several di�erent areas and problems [8-24]. A particular feature

of q-deformed systems, which began to be explored more recently [25-27], is that they

present nonextensive properties and are consequently connected to nonextensive statistical

mechanics [8].

The thermal properties of ideal qantum q-gases, which are systems described by de-

formed Hamiltonians made of bosonic q-oscillators, have been studied in the case of q > 1

[29-35]. As it is quite di�cult to obtain exact expressions when studying the statisti-

cal properties of such Hamiltonians, most of the papers have considered approximations

around the deformation parameter q. Those deformed systems have been analysed both

in the fundamental [31,34,35] and in inequivalent representations [32,33] of a q-oscillator

algebra and they have been shown to exhibit Bose-Einstein condensation phenomenon in

all cases. They were applied to describe phonons in 4He and results compatible with the

experimentally proved stability of the phonon spectrum were obtained [18,36,37].

In this paper, our purpose is to analyse the thermodynamic properties of a deformed

q-oscillator system when q < 1. As will be seen, for those values of the deformation

parameter the Hamiltonian studied in the papers quoted above [29-36] leads to models

lacking of interest, and a somewhat di�erent Hamiltonian is proposed. The interesting

result is that the values of the critical temperature of condensation of this system can

be much smaller than in the non-deformed ideal bosonic gas. This is a new result as in

the quantum q-gas models so far analysed T q
c > Tc [31-35]. We note that the measured

temperature of �-point in 4He is also smaller than Tc.

This paper is organised as follows: in Section 2 we make a brief review of q-oscillators;

in section 3 propose a q-deformed Hamiltonian that is more adequate for q < 1; in Section

4 we study the Bose-Einstein condensation and the behaviour of the speci�c heat for our

deformed system; �nally, in section 5 we discuss our results and present some conclusions.
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2 Brief review on q-oscillators

Let us consider the q-oscillator algebra generated by the elements A;A+ and N de-

scribed by the relations [4,5]

[A;A+]A = AA+ � q2A+A = 1; [N;A+] = A+;

and [N;A] = �A ; (2.1)

where q is a real parameter, �1 < q < 1, and N+ = N . Also, with a pair of indepen-

dent q-oscillators it is possible to realize the suq(2) algebra analogously to the Schwinger

construction of su(2).

A representations of the relations (2.1) in the Fock space F spanned by the normalised

eigenstates jn > of the number operator N is given by

Aj0 >= 0 ; N jn >= njn > ;

jn >=
1

([n]!)1=2
(A+)nj0 > ; n = 0; 1; 2; � � � (2.2)

where [n]! � [n][n � 1]:::[1], with [n] = q2n�1
q2�1

, known as Gauss number. Note that

[n] �!
q!1

n. In the Fock space F , it is possible to express the deformed oscillators in terms

of the standard bosonic ones b; b+ as [38]

A =
[N + 1]1=2

(N + 1)1=2
b ; A+ = b+

[N + 1]1=2

(N + 1)1=2
; (2.3)

where b+b = N ; it can easily been shown in F that

AA+ = [N + 1] ; A+A = [N ] ; (2.4)

and, as expected, the standard bosonic algebra is obtained in the q ! 1 limit.

It is very well known that Heisenberg algebra describes the algebraic structure of the

harmonic oscillator. It is possible to de�ne the Hamiltonian

H = �h!A+A = �h![N ] (2.5)

that recovers the harmonic oscillator Hamiltonian for q! 1 and whose algebraic structure

is the q-oscillator algebra (2.1): the creation and annihilation operators A+; A generate

the spectrum of the system described by (2.3), as A+jn >! jn+1 > and Ajn+1 >! jn >.
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It is interesting to note that the energy eigenvalues �n of Hamiltonian (2.3) follow a

Fibonacci-type relation [39]. By de�nition,

Hjn >= �njn >; (2.6)

where �n = �h![n] and from (2.2), (2.4) and the de�nition of the Gauss number, it is simple

to show that �n satis�es

�n+1 = (1 + q2)�n � q2�n�1: (2.7)

3 A model for non-relativistic ideal q-gases with q<1

The Hamiltonian of an ideal deformed system has in general [30-36] been de�ned as

H0 =
X
i

AiA
+
i =

X
!i[Ni]A ; (3.1)

where Ai, A
+
i and Ni are interpreted respectively as independent annihilation, creation

and occupation number operators of particles in level i, with energy !i. These operators

satisfy algebra (2.1) and commute for di�erent levels.

The grand-canonical partition function is given by

Z = Tr exp [��(H � �N)] = e��
; (3.2)

where � = (kBT )
�1, kB the Boltzman constant; N is the total number operator

N =
X
i

Ni ; (3.3)

� is the chemical potential, and 
 is the grand canonical potential. For the above system,

Z factorises and the grand canonical potential is given by a sum over single-level partition

functions


 = �
1

�

X
i

log Z0
i (!i; �; �) ; (3.4)

where

Z0
i (!i; �; �) =

1X
n=0

e��(!i[n]��n) : (3.5)

As we will be interested in the non-relativistic q-boson, the dispersion law is

!i =
p2

2m
(3.6)
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and the general expression for the grand canonical potential (4) is


 = �
V

h3�

Z
d3p ln

X
n=0

e��(
p[n]
2m

��n) : (3.7)

Integrating over the angular variables, de�ning the new variable x = �(p=2m), and inte-

grating by parts, 
 can be rewritten as


 = �
2�3=2V (2m)3=2

2�(3=2)h3�5=2

Z
dxx3=2

P
1

n=0[n]Az
ne�[n]AxP

1

n=0 z
ne�[n]Ax

; (3.8)

where the thermal wavelength �,

��3 =
(2m�)3=2

(�h2)3=2
; (3.9)

is the relevant expansion parameter in the thermodynamic functions.

For the q-oscillator in 3-spatial dimensions and energy spectrum given by (12), the

pressure P = �
=V and the density n = @P=@�jT;V are then:

P (T; z) = kT��3Yq(z) (3.10)

n(T; z) = ��3yq(z) ; (3.11)

where [35]

Yq(z) =
1

�(5=2)

Z
dxx3=2

P
1

n=0[n]Az
ne�[n]AxP

1

n=0 z
ne�[n]Ax

(3.12)

and

yq(z) = z@zYq(z) =
3=2

�(5=2)

Z
dxx1=2

P
1

n=0 nz
ne�[n]AxP

1

n=0 z
ne�[n]Ax

: (3.13)

Let us consider functions Yq(z) and yq(z) given by (3.12) and (3.13). It has been

shown [35] that these functions always converge when q > 1. We have now analysed their

behaviour for q < 1 and veri�ed numerically that they do not converge for those values.

This is a consequence of the fact that for q < 1 [n]q goes to the asymptotic value 1
1�q2

and this asymptotic level is in�nitely degenerate. Therefore the exponential in the sums

in (3.12) and (3.13) converge to a �nite value which contributes to the series an in�nite

number of terms. Another consequence is that no other state constributes when the mean

values of physical quantities are calculated and what we have is e�ectively a one-system

state. In this paper we propose a Hamiltonian that breaks this degeneracy, allowing us

to analyse the thermodynamic behaviour of the system.
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Let us then consider that our system is described by the deformed Hamiltonian

H1 =
X
i

!i
AiA

+
i + 
 �Ai

�A+
i

1 + 

=
X
i

!i
[Ni]A + 
[Ni] �A

1 + 

; (3.14)

where 
 is a real constant, 0 < q < 1 and �q � 1.

We have now two sets of operators A;A+; NA and �A; �A+; N �A each satisfying relations

(2.1) for two di�erent values of the deformation parameter, q and �q. For each of these

sets we construct a Fock space representation of algebra (2.1), according to (2.2). The

Hamiltonian operator(3.14), that has to be written in a more complete way as

H1 =
X
i

!i
AiA

+
i 
 I �A + 
 �Ai

�A+
i 
 IA

1 + 

=
X
i

!i
[Ni]A 
 I �A + 
[Ni] �A 
 IA

1 + 

; (3.15)

where IA(I �A) is the identity operator on the Fock space generated by jn >q (jn >�q), acts

on the Fock space generated by the normalized eigenstates jn >q 
jn >�q according to

H1(jn >q 
jn >�q) =
X
i

!i
[ni]A + 
[ni] �A

1 + 

(jn >q 
jn >�q) : (3.16)

For the Hamiltonian above expressions (3.12) and (3.13) for Yq (z) and yq(z) will be

replaced by

Y(q; �q)(z) =
1

�(5=2)

Z
dxx3=2

P
1

n=0 Enz
ne�EnxP

1

n=0 z
ne�Enx

(3.17)

and

y(q; �q)(z) = z@zYq(z) =
3=2

�(5=2)

Z
dxx1=2

P
1

n=0 nz
ne�EnxP

1

n=0 z
ne�Enx

: (3.18)

where

En =
[n]A + 
[n] �A

1 + 

: (3.19)

We have analysed the behaviour of functions Yq;�q(z) and yq;�q(z) when �q = 1 and �q > 1,

in both cases keeping q < 1, for di�erent values of gamma. We found that they always

converge, which means that the degeneracy presented by Hamiltonian (3.1) was broken.

4 Speci�c heat for q < 1 non-relativistic q-gases

We are now able to study the Bose-Einstein condensation for the case q < 1. Following

the usual path [40], when z ! 1 (or T ! Tc, Tc being the critical temperature) we

have to take into account the zero-point energy and single out its contribution in the
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functions Yq;�q(z) and yq;�q(z). If we keep n constant and decrease the temperature, n�3

and, consequently, z increase, until z = 1, which happens when T = T q;�q
c , by de�nition

T q;�q
c =

h2n2=3

�y
2=3
q;�q (1)

: (4.1)

The deformed critical temperature above is related to the critical temperature Tc for the

non-deformed non-relativistic ideal gas of the same density n, according to

T q;�q
c

Tc
=

"
2:61

yq;�q(1)

#2=3
(4.2)

where

Tc =
h2n2=3

2:612�
: (4.3)

As in the vicinity of T q;�q
c we have to take into account the zero-point energy and single

out its contribution in (3.16)and (3.17) [40], the expressions for P and n become

P (T; z) = ��1��3Yq;�q(z) ; n(T; z) =
z

V (1� z)
+ ��3yq;�q(z); (4.4)

where the �rst term on the right side of n(T; z) is relevant only for T � T q;�q
c , due to the

contribution of the zero energy.

By de�nition, CV , the speci�c heat per particle, is

CV

kB
=

1

kn

@e

@T
jn; (4.5)

e is the internal energy per volume. We obtain CV in the two regimes:

T > T q;�q
c

CV

kB
=

15Yq;�q(z)

4�3n
�

9yq;�q(z)

4y0q;�q(z)

T < T q;�q
c

CV

kB
=

15Yq;�q(1)

4�3n
;

with

y0q;�q(z) =
@yq;�q(z)

@z
: (4.6)

The existence of a �-point kind of transition depends on the value of �, by de�nition,

9y(q; �q)(z)

4y0(q; �q(z)
= �: (4.7)

From (4.2) and (4.6), we see that the thermodynamic behaviour of our system depends

on the functions Yq;�q(z) and yq;�q(z), which are given by expressions (3.16)and (3.17), and

on

y0q;�q(z) =
3=2

�(5=2)

Z
dx x1=2

"P
1

n=0 z
nn2e�xEnnP

1

n=0 z
ne�xEnn

�

P
1

n=0 z
nne�xEnn

[
P
1

n=0 z
ne�xEnn ]2

#
; (4.8)
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which are all convergent, well behaved functions. Our interest is to study the behaviour of

the speci�c heat and the existence of �-point transitions. We will then analyse equations

(4.2) and (4.6) for q < 1 in two cases: (a) �q = 1 and (b) �q > 1.

(a) When q < 1 and �q = 1, Yq;�q(z) can be trivially rewritten as

Yq;�q(z) =
1

�(5=2)

Z
dxx3=2

Pn0
n=0 Enz

ne�Enx +
P
1

n0+1
Enz

ne�EnxPn0
n=0 z

n e�Enx +
P
1

n0+1
zne�Enx

=
1

�(5=2)

Z
dxx3=2

I1 + I2
I3 + I4

; (4.9)

where now

En =
[n]A + 
n

1 + 

: (4.10)

If n0+1 is the lowest value of n for which En above reaches the asymptotic value 1
(1�q2)(1+
)

,

then the four terms of the integrand in (13) become respectively

I1 =
n0X
n=0

[n]A + 
n

1 + 

zne�

[n]A+
n

1+

x;

I2 =
1X

n0+1

1
1�q2 + 
n

1 + 

zne�

1
1�q2

+
n

1+

x;

I3 =
n0X
n=0

zne�
[n]A+
n

1+

x;

I4 =
1X

n0+1

zne�
1

1�q2
+
n

1+
 x: (4.11)

The terms I2 and I4 can be easily summed. For the sake of simplicity, let us de�ne

A =
1

(1 � q2)(1 + 
)
;

�
 =



1 + 

;

B = A+ �
(n0 + 1): (4.12)

After some straightforward calculations, recalling that

1X
n=0

zne�anx =
1

1� ze�ax
; (4.13)

we rewrite I2 and I4 as

I2 =
zn0+1e�Bx

(1� ze��
x)2

h
B(1� ze��
x) + �
ze��
x

i
;

I4 =
e�Bxzn0+1

1 � ze��
x
: (4.14)
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Therefore, our Y (q; �q)(z) becomes

Y (q; �q)(z) =
1

�(5=2)

Z
dxx3=2

2
64 (

Pn0
n=0

[n]A+
n
1+


zne�
[n]A+
n

1+

x)(1 � ze��
x)2

(
Pn0

n=0 z
ne�

[n]A+
n

1+

x)(1� ze��
x)2 + zn0+1e�Bx(1� ze��
x)

+

e�Bxzn0+1(B(1� ze��
x) + �
ze��
x)

(
Pn0

n=0 z
ne�

[n]A+
n

1+

x)(1 � ze��
x)2 + zn0+1e�Bx(1 � ze��
x)

3
5
(4.15)

Following a similar procedure, we obtain for y(q; �q) the expression

y(q; �q)(z) =
1

�(5=2)

Z
dxx3=2

2
4 (

Pn0
n=0 nz

ne�
[n]A+
n

1+

x)(1� ze��
x)2

(
Pn0

n=0 z
ne�

[n]A+
n

1+

x)(1� ze��
x)2 + zn0+1e�Bx(1 � ze��
x)

+

e�Bxzn0((n0 + 1)(1� ze��
x) + ze��
x)

(
Pn0

n=0 z
ne�

[n]A+
n

1+

x)(1� ze��
x)2 + zn0+1e�Bx(1� ze��
x)

3
5 :
(4.16)

From (4.15) and (4.16) we can compute the speci�c heat per particle (4.6) for di�erent

values of 
 and q. In �gure I, we show some results for �q = 1 and four di�erent values

of q. (b) When q < 1 and �q > 1, the speci�c heat (4.6) can be numerically calculated

from (3.16), (3.17) and (4.8). We note that for q < 1, y(q; �q)(1) is larger than the non-

deformed value y(1) = 2:61 and increases as q decreases. On the contrary, for q > 1,

yq(1) was smaller than 2:61 and the deformed critical temperatures were larger than the

non-deformed value Tc, obtained from the non-relativistic ideal bosonic gas [35].

The results for q < 1 and �q > 1 are presented in �gure II .

5 Conclusions

The deformed Hamiltonian here presented enabled us to complete the study of the

non-relativistic deformed bosonic gas for deformation parameters ranging from 0 to 1.

Our analysis showed that deformation is somehow connected to the existence of �-type

transitions. Besides, di�erent critical temperatures are obtained and criticality can either

be favored or rendered more di�cult to attain, depending on the values of deformation

parameters taken.

When �q = 1, we have analysed the results of numerical calculations of the speci�c heat

(4.6), for four values of q smaller than 1 and two values of 
. As can be seen from �gures
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I, the � term is zero and the speci�c heat passes by the critical value of the temperature

continuously. No �-point type of discontinuity appears in those cases.

We have also studied the behaviour of CV for four sets of values of q smaller than 1

and �q larger than 1 and two values of 
. In these cases, � 6= 0 and the speci�c heat does

present a �-point transition, as shown in �gures II.

We note that in all cases, there is, for 1 < �q <1, the deformed critical temperatures

T (q; �q)c are smaller than the usual Tc.

Therefore, we found that the presence of the Bose-Einstein condensation phenomenon

in the non-relativistic q-gas only happens when one of the q-oscillators terms in Hamilto-

nian (3.15 ) has a deformation parameter larger than one. Recalling that all the q-gases so

far studied have a critical temperature larger than the usual one, which is obtained from

the non-deformed bosonic gas, we can also conclude that the presence of a deformation

smaller than 1 is a necessary condition to have lower critical temperatures.

Analysing the results shown in Table I, we see that the critical temperature always

decreases when any of the two parameters q or 
 decrease and �q approaches 1:0, indicating

that we can get very low critical temperatures by choosing su�ciently small values of q

and 
. This means that the critical temperature goes down as the weight of the q < 1

term in the Hamiltonian that describes our deformed system gets larger.

In the model here presented, the possibility of decreasing the critical temperatures

indicates that quantum symmetries might as well play some role in the study of 3He, in

which the phenomenon of super
uidity is associated to a very low critical temperature of

the order of 10�3K.
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Table I

(a) Comparison of the values of T q;�q
c for the same values of �q and q and two values of 


�q = 1:01, q = 0:3, 
 = 1:0, T q;�q
c = 0:791Tc

�q = 1:01, q = 0:3, 
 = 0:1, T q;�q
c = 0:280Tc

(b) Comparison of the values of T q;�q
c for the same values of q and 
 and two values of �q

�q = 1:1, q = 0:9, 
 = 0:1, T q;�q
c = 0:987Tc

�q = 1:01, q = 0:9, 
 = 0:1, T q;�q
c = 0:532Tc

(c) Comparison of the values of T q;�q
c for the same values of �q and 
 and two values of q

�q = 1:01, q = 0:9, 
 = 0:1, T q;�q
c = 0:532Tc

�q = 1:01, q = 0:3, 
 = 0:1, T q;�q
c = 0:280Tc
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Figure I

Speci�c heat per particle Cv=kB (4.6) for the system described by the Hamiltonian (3.15),

� = T q
c =Tc, with �q = 1 and:

(a) q = 0:1, 
 = 0:1 and T �q
c = 0:178Tc;

(b) q = 0:3, 
 = 0:1 and T �q
c = 0:181Tc;

(c) q = 0:9, 
 = 0:1 and T �q
c = 0:270Tc ;

(d) q = 0:1, 
 = 1:0 and T �q
c = 0:630Tc.
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Figure II

Speci�c heat per particle Cv=kB (4.6) for the system described by the Hamiltonian (3.15),

� = T q;�q
c =Tc, with:

(a) q = 0:3, �q = 1:01, 
 = 0:1 and T q;�q
c = 0:280Tc ;

(b) q = 0:9, �q = 1:01, 
 = 0:1 and T q;�q
c = 0:532Tc ;

(c) q = 0:3, �q = 1:01, 
 = 1:0 and T q;�q
c = 0:791Tc;

(d) q = 0:9, �q = 1:1, 
 = 0:1 and T q;�q
c = 0:987Tc;
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