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Abstract. We calculate the one-loop divergences for quantum gravity with cosmological con-

stant, using new parametrization of quantum metric. The conformal factor of the metric is

treated as an independent variable. As a result the theory possesses an additional degeneracy

and one needs an extra conformal gauge �xing. We verify the on shell independence of the di-

vergences from the parameter of the conformal gauge �xing, and �nd a special conformal gauge

in which the divergences coincide with the ones obtained by t'Hooft and Veltman (1974). Us-

ing conformal invariance of the counterterms one can restore the divergences for the conformal

metric-scalar gravity.
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1 Introduction

The renormalization of quantum gravity and in particular the calculation of the one-loop di-

vergences for quantum General Relativity is considered as a problem of special interest. The

non-renormalizability of quantum gravity has been established after the pioneer one-loop cal-

culation by t'Hooft and Veltman [1] and Deser and van Nieuwenhuizen [2], who derived the

divergences for pure gravity and also for the gravity coupled to scalar, vector and spinor �elds.

In both [1] and [2] the background �eld method has been used such that the splitting of the

metric was performed according to g�� ! g�� + h�� .

Later, the derivations of the one-loop divergences have been carried out many times, using

di�erent parametrizations of quantum metric and non-minimal gauge �xing conditions. The

calculations were also done for gravity coupled to various kinds of matter �elds. One can

mention: the �rst calculation for the pure gravity in a non-minimal gauge [3]; the calculations

using plane Feynman diagrams with various parametrizations of the quantum metric [4]; in

[5] the result identical to the one of [1] has been achieved using local momentum representation

technique; the calculation for gravity coupled to Majorana spinor using the (slightly modi�ed)

Schwinger-DeWitt technique [6]; the calculations in the �rst order formalism (with a�ne

connection independent on the metric) using plane Feynman diagrams [7] and background �eld

method and Schwinger-DeWitt technique [8]. Ref. [8] contains also the one-loop result for the

g�� ! g�� + h�� parametrization, di�erent from the one of [1]. The generalized Schwinger-

DeWitt technique has been applied in [9] to con�rm the gauge �xing dependence found in [3].

The calculation for gravity with cosmological constant has been done in [10] and for the Einstein-

Cartan theory with external spinor current in [11]. Recently, the one-loop calculations for the

pure gravity has been performed in [12] where the parametrizations like g�� ! g�� + (�g)r h��
have been applied. The parametrizations of [12] are more general than the ones used in both [1]

and [8], so that [12] reproduces both results in the limiting cases.

The interest to the gauge �xing dependence of the in quantum gravity has been revealed in

the last years, when some more complicated linear gauges have been studied [13] (one can consult

this paper for the list of references concerning the problem of gauge dependence in quantum �eld

theory and quantum gravity). The purpose of the present letter is to report about the calculation

of the one-loop divergences in quantum gravity, in some new parametrization which is di�erent

from those which have been used before. This parametrization is based on the separation of

the conformal factor from the metric and is related to the well known conformal structure of
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gravity (see, for example, [14, 15]). In part, our parametrization resembles the one which has

been applied in [16] for the derivation of the divergences in 2 + � space-time dimensions. As

usual, there is the possibility to conduct an e�cient auto-veri�cation of the result, using the on

shell gauge �xing independence. One has to notice that the study of conformal gauge in four

dimensions has some special importance, since its use permits partial veri�cation of the gauge

�xing procedure h�� = 0, which is usually applied in conformal quantum gravity [21, 22]. It is

worth to notice that the divergences for the Weyl gravity calculated in [21] and [22] di�er unlike

one uses the so-called conformal regularization introduced in [21]. The result of our calculation,

which is intended to check the applicability of the conformal gauge h�� = 0, can be relevant in

the general context of conformal quantum gravity theories in four dimensions.

The present letter is organized as follows. In the next section we present the details of the one-

loop calculations. The analysis of the results, including the on-shell gauge �xing independence

is performed in section 3, and in the last section we draw our conclusions.

2 One-loop calculation in a conformal gauge

Our starting point is the gravity action with the cosmological constant

S =
1

�2

Z
d4x

p�g (R+ 2�) ; (1)

In order to illustrate how the degeneracy related to the conformal symmetry appears, let us

brie
y repeat the consideration of [14, 15].

Performing conformal transformation g�� ! ĝ�� = g�� � e2�(x), one meets relations between

geometric quantities of the original and transformed metrics:

p
�ĝ = p�g e4� ; R̂ = e�2�

�
R� 62� � 6(r�)2� : (2)

Substituting (2) into (1), after integration by parts, we arrive at:

S =

Z
d4x

p�g
�

6

�2
e2� (r�)2 + 1

�2
e2� R+

2

�2
�e4�

�
; (3)

where (r�)2 = g��@��@��. If one denotes

' =
p
12=�2 � e� ; (4)

the action (1) becomes

S =

Z
d4x

p�g
�
1

2
(r')2+ 1

12
R'2 +

�2

72
�'4

�
; (5)
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that is the action of conformal metric-scalar theory. This theory is conformally equivalent to

General Relativity with cosmological constant. Contrary to General Relativity, the theory (5)

possesses extra local conformal symmetry, for it is invariant under the transformation

g0�� = g�� � e2�(x) ; '0 = ' � e��(x) : (6)

This symmetry compensates an extra (with respect to (1)) scalar degree of freedom.

Let us now discuss the relation between two theories on quantum level. In case of renor-

malizable �eld theory the di�erence between two conformally equivalent theories appears on

quantum level because of conformal anomaly. For quantum gravity one can not go so far be-

cause both theories are non-renormalizable and therefore anomaly is ambiguous 4. At the same

time, we can investigate the di�erence in quantization of two theories and the resulting di�er-

ence in divergences. One has to notice that, despite the derivation of divergences in the theory

(5) is possible using the techniques developed in [9] and [17], such a calculation would be quite

di�cult. Technically it is much more cumbersome than similar derivation for the non-minimal,

non-conformal metric-scalar theory [18, 19]. In this paper we do not try to perform this calcu-

lation directly, but instead consider the derivation of the one-loop divergences in the theory (1)

using special conformal parametrization.

Since the theory (1) is di�eomorphism invariant, it should be quantized as a gauge theory.

On the other hand, the theory (5) has an extra conformal symmetry, and thus its quantization

requires an extra gauge �xing which is called to remove corresponding degeneracy. As we shall

see later, this is also true for the quantization of (1) in conformal variables.

In the framework of the background �eld method, let us consider the following shift of the

metric

g�� ! g0�� = e2� [g�� + h�� ] ; (7)

where h�� and � are quantum �elds and g�� is the background metric. All raising and lowering

of indices is done through g�� . The parametrization (7) resembles the conformal transformation

which led to the conformal form of the action (3). Then one can expect to meet an additional

degeneracy for the quantum �eld, related to the conformal symmetry.

For the one-loop divergences, one needs only the bilinear, in the quantum �elds h�� and �,

4For instance, the divergences of (1) vanish for the special gauge �xing, and then anomaly vanishes.
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part of the action. This part can be presented in the symbolic form:

S(2) =

Z
d4x

p�g
�

h�� �

�
Ĥ

0
@ h��

�

1
A : (8)

Now, one has to introduce the gauge �xing for the di�eomorphism. We choose the gauge �xing

term in the form

SGF = � 1

�

Z
d4x

p�g ���� (9)

with

�� = r�h
�
� + �r�h� 
r��; (10)

where h = h�� and �, �; 
 are gauge �xing parameters. It is useful to choose them in such a

way that the bilinear form becomes minimal second order operator.

One can �nd that this can be achieved by taking � = 2, � = �1=2 and 
 = 2. Then the

bilinear form of the action with the gauge �xing term becomes

S(2) + S
(2)
GF =

Z
d4x

p�g
n
h�� [K�� ; ��(2� 2�) +M�� ;�� ] h

��+

+� (�42 + 2R+ 16� ) � + h�� (�g��2� 2R�� + g��R+ 4�g�� ) � g ; (11)

where

K�� ; �� =
1

4

�
��� ; �� � 1

2
g��g��

�
(12)

and

M�� ;�� = �1

4
��� ;��R+

1

8
( g��R�� + g��R�� + g��R�� + g��R�� )�

�1

4
( g��R�� + g��R�� ) +

1

8
(R���� +R���� +R���� +R���� ) +

1

8
g��g��R; (13)

where we have used standard notation ��� ; �� =
1
2(g��g�� + g��g��).

It proves useful to separate the �eld h�� into the trace and the traceless part, h�� = �h�� +

1
4g

��h. Then the bilinear form (11) becomes

S(2) + S
(2)
GF =

Z
d4x

p�g
�
�h��

�
1

4
���� ; �� (2� 2�) +M�� ; ��

�
�h��+

+ �h�� [�2R�� ] � + h

�
� 1

16
2+

1

8
�

�
h+

+ h

�
�2+

1

2
R+ 4�

�
� + � (�42+ 2R+ 16� ] �

�
: (14)
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Here

����;�� = ���;�� � 1

4
g��g��

is the projector to the traceless states. The expression (14) exhibits the degeneracy in the mixed

h�� sector, and hence further calculation requires some additional restriction on the quantum

�elds. This degeneracy is a direct consequence of the conformal symmetry (6) and thus we have

to �x this symmetry. Let us choose the conformal gauge �xing in the form � = �h with � being

the gauge �xing parameter. Then (14) becomes:

S(2) + S
(2)
GF =

Z
d4x

p�g
�

�h��
�
1

4
���� ; �� (2� 2�) +M�� ;��

�
�h��+

+ �h�� [�2�R�� ] h+ h [ b12+ 2b2�+ b3R ) h
	

(15)

where we introduced the notations

b1 = � 1

16
� �� 4�2; b2 =

1

16
+ 2�+ 8�2; b3 =

1

2
�+ 2�2: (16)

The total one-loop divergences will be given by

�
(1)
div =

i

2
Tr ln Ĥgravjdiv � iTr ln M̂ jdiv (17)

where the last term is the contribution from the ghost �elds, and Ĥgrav is the operator corre-

sponding to eq. (15). The standard Schwinger-DeWitt algorithm enables one to derive

i

2
Tr ln Ĥgravjdiv = �1

"

Z
d4x

p�g
�
19

18
R2
���� +

�
4

b1
�2 � 55

18

�
R2
��+

�
59

36
� �2

b1
+

b3
6b1

+
b23
2b21

�
R2 +

�
2b2b3
b21

+
b2
3b1

+ 9

�
R�+

�
2b22
b21

+ 18

�
�2

�
(18)

where " = (4�)2(n� 4). Also, the operator of the ghost action M̂ is

M̂�
� = � ���2 � R�

� : (19)

We remark that the ghost operator does not depend on the gauge transformation of the �eld

�, because at the one-loop level, in the background �eld method, the generator of the gauge

transformations which enters into the expression for M̂�
� is the one for the background (not

quantum!) �elds [1] (see also [20]) and in case of � this operator is zero.

Calculation of the ghost contribution yields standard result [1]

�iTr ln M̂ jdiv =
1

"

Z
d4x

p�g
�
�11

90
E +

7

15
R2
�� +

17

30
R2

�
; (20)
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where E = R2
���� � 4R2

�� +R2. Finally, one arrives at the following one-loop divergences:

�
(1)
div = �1

"

Z
d4x

p�g � p1(�)E + p2(�)C
2 + p3(�)R

2+ p4(�)R�+ p5(�)�
2
	

(21)

where C2 is the square of the Weyl tensor C2 = E + 2(R2
�� � 1

3 R
2) and

p1(�) =
1

180

149 + 2384�+ 15296�2

(1 + 8�)2
;

p2(�) =
1

20

7 + 112�� 192�2

(1 + 8�)2
;

p3(�) =
1

12

3 + 80�+ 1152�2+ 6144�3+ 10240�4

(1 + 8�)4
;

p4(�) =
2

3

13 + 432�+ 5696�2+ 31744�3+ 63488�4

(1 + 8�)4
and

p5(�) = 4
5 + 176�+ 2368�2+ 13312�3+ 26624�4

(1 + 8�)4
: (22)

The above expression (21), (22) contains complicated dependence on the gauge �xing parameter

� . Besides, the one-loop divergences may depend on others gauge �xing parameters �; �; 


from (10). Here we are interested only in the dependence on �, and keep �; �; 
 �xed as before.

3 Analysis of the results

The expression (21), (22) looks quite cumbersome and somehow chaotic because of the compli-

cated dependence on the gauge �xing parameter �. But, in fact, there are a few possibilities to

check and analyze it. First of all, for the value � = 0, all the �-�eld contributions drop and we

arrive at the well-known result [1, 10]

�
(1)
div = �2

"

Z
d4x

p�g
�

1

120
R2 +

7

20
R2
�� +

53

90
E +

13

3
R�+ 10�2

�
: (23)

For other values of � the divergences are di�erent and one can check that the �-dependence can

not be compensated by the change of other gauge �xing parameters �; � or by the change of

parameter r introduced in [12].

If we take a limit �!1, the result is not conformal invariant, as one could naively expect.

Let us give some additional comment on this point. The above calculation can be regarded as

a particular case of the much more complicated derivation of the one-loop divergences in the

theory (5), which was mentioned in the Introduction. In general calculation one is supposed to

shift both �elds ' (or �, this is equivalent) and g�� , while in this paper we took the background
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scalar to be constant. Let us imagine, for a moment, that we shifted both �elds

� ! � + � ; g�� ! g�� + h�� : (24)

As far as we believe into conformal invariance of the one-loop divergences5, the result for con-

formal metric-scalar theory is [23]

�div =
1

�

Z
d4x

p�g �p1E + p2C
2+

+p3

�
R� 32�

�
+

3(r�)2
2�2

�2
+ p4�

�
R� 32�

�
+

3(r�)2
2�2

�
+ p5�

2

)
; (25)

where � = �(�) is some function of �. The procedure accepted in this paper is equivalent to

taking � = const, and therefore (22) should be regarded as (25) with constant �. Obviously,

constant � does not transform and the conformal invariance is lost.

In order to verify the result of the calculation, one can use classical equations of motion

R�� = �� g�� . On shell the divergences become

�
(1) on�shell
div = �1

"

Z
d4x

p�g
�
53

45
E � 58

5
�2

�
; (26)

independent on the gauge �xing parameter �. As a consequence, the on shell renormalization

group equation for the dimensionless cosmological constant �2� [21] is gauge �xing independent

in our conformal parametrization. One has to notice that the coe�cients of (26) are linear

combinations of all �ve functions (22), and thus the complete cancellation of the �-dependence,

together with (23), provide a very con�dent veri�cation of the result (21).

4 Conclusions

We have studied the equivalence between General Relativity and conformal metric-scalar theory

on quantum level. The one-loop divergences were calculated for quantum gravity, for the �rst

time this was done in the conformal parametrization for quantum metric. We have found that

the dependence on the new gauge �xing parameter disappears on shell. This gives an e�cient

check to the whole procedure based on �xing the conformal symmetry by using the trace of

5Some remarkable example of the opposite one can meet in the Weyl gravity, where the results of two one-loop

calculations [21] and [22] coincide only after the use of the so-called conformal regularization [21]. The lack of

equivalence between the results of [18] and [19] may indicate to the similar problem.
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quantum metric h = h��. The results of our work show that the source of the discrepancy in the

results for the quantum Weyl gravity is not caused by this conformal gauge �xing. Finally, the

supposition of conformal invariance of the counterterms enables one to restore the divergences

for the gravity coupled to conformal scalar �eld (25).
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