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Abstract

Dimensional regularization is used to evaluate divergent

functional determinants in some specific examples.
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DIMENSTIONAL REGULARIZATTION AND FINITE TEMPERATURE DIVERGENT DETERMINANTS

Introduction

In the formulation of Quantum field theory by means of
functional integrals it often appears the need to compute de
terminantsof differential operators which are divergents for
the relevant bourdary conditions.

The appearances of divergences eveninclassical physics is
old dated. See for example refs, | 1] 1:2] and, in particular,
ref. [ 3]. In renormalization theory explicit divergences are
avoided by some regularization procedure. See for instance ref.
ra].

Due to gauge invariance the use of dimensional regulariza-
tion has been of particular interest.

The purpose of this paper is to use the same method of

analytic continuation in the number of dimensions to solve
the above mentioned prcblems of divergent functional deter-
minants in finite temperature field theories.
§1. As an introductory example, let us take the case discussed
in ref. [:5] the evaluation of the determinant of the lapla-
cian operator in a finite temperature field theory. In this
theory, the partition function is given by:

., 1 B 3 y
i3 J dt J d X¢A§J (1)

(
Z(¢) = J D¢ exp

o]
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4
z(¢) = det a"L/? a= ] o2 (2)

Log z(¢) = - % Tr Log A (3)

The eigenvalues of the laplacian operator take the form.

A= R (BT - k2 e w} with of = 3%9 (4)
B = % being the period in time.
Then:
+ 00 3 + @
,eog 7 = = g _c_i_k,;.__ Eog(k2+w§1) =_§ z In. (5)
n=-—-« J (2TI') n=-—om
where
A4
vV 2 o) _
In==( d kv Kog(k2+w;)= 23_ 5 f ak k" 12090¥+m%) (6)
J(2r) - (2m) T(3)

where the number of space dimensions has been replaced by an
analytic variable (v)

According to ref. [ 6], p.563

f’dk k¥l en(14k2) = —“;“UF (7)
o VAL Vl—z-
So, we get:
v
= +1
Zwv m 2
T = n (8)
n V) e in ol

VT (3) singt. (2m) "

From (5) we obtain:
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Vv AV}
7 7t

® (w2)cm

n
Log z =-V ] 2
n=1 vr(%)bin%;(zw)v

)2 = (2rT) Vi (-v)

z(-Vv) being the Rieman ¢~-function, we have:

1
V.7 TvC(—v) (9)

\Y . VT
T (§-+l) ér(.Vl.—z'

N_LC

Log z =~

(9) can also be written, using

z(=v) T(l+v)
2o = o 22X r(14v), (10)
sdnSL (2m) t*Y
as
v ¥ o v+l
Log z = g1 T( > ) ¢ {1+v) (11)
2

which, for v = 3 coincides with the result quoted in ref. Eﬂ,
namely:

72 v T3

Log z = 56

Another interesting example can be found in App. D. ref. |jﬂ.

One is led -to compute

v [

(2m) % n=-w

d3k Ln(k2+wW?) (12)
n
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where
W2 = w? - %? q being some constant number.
n n
(13)
(12) can be written according to (6), (7) and (8)
71 .
' (i)
1= v \)7T T ) (wn_ig)v
(2m) I (=+1) sin-= n=0
2 2
Y1
v 2
== ﬂvn v C(—v"_%) ' (14)
T(5+l) ALHTTB
: v 1
with t(z,q) =) ——
n=v (n+q)
In particular, for v = 3, we have £ (-3,q9) =-% B4(q) with
B, (x) = x* - 2x% + x% - éL and (14) can be compared with ref.

(7], form D.3.
§2, We now want to discuss the calculation of the determinant
related with the consideration of domain walls in A¢* theory
(Ref. [87]).

For the calculation of the partition function, one is led
to the following expression (Ref. [ 8|, form 2.15)

n=to

I g(w;+Ei(J))

I = gn 2222
¥ o

2,@2 (=
I ]}(wn-l-Ev(j))

n=-m

(15)

where the eigenvalues E? are given by (see ref. [:8],App a).
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T
, 2
2 (1 - 12 2 2 &
ES(LL) kT + kL + 2M° + T d(kL) (16)
2 — 2 2 2
EV(kL) = k= + kL + 2M

whereg kT, k. are transversal and longitudinal with respect to

L
the wall. L® is the volume of the space and S(kL) is the phase
shift produced by the soliton wall

Eg. 15 reduces to

— 2 2 3
I =1L I1 + L 12 + L f I3(kL)dkL (17)
— 2 2,2 - 2 2,342, 2
I, E d*k, £n(kZ+w?) I, g A*ky Ln (kp+5M7+0])
268
k2+k2+5k_+2M? @2
13=2fd2sznTLLL - (18)
u J k§+ki+2M2+mg
Using (5) to (10) we easily obtain:
v-1
1= - 2% 2 r eV e | (19)

To compute 12 we are led to the series

4 o
S = ) (w;+b2)v/2 s which we write: (20)
-0

n
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—6-
v+1 _v+1l
s=b"+2(2)" /i B [Fat ¢ h— (2t (21)
- (E m v Tt vl ‘2
re3)s -l

(See ref. [6] pag. 713)

If we want to compute (21) for v = 2 (form (18)) the be-
haviour of the integrand for t = 0 makes the integral di-
vergent, so we shall add and substract the first two terms (the
dangerous ones for v =>2) of the series for the Bessel func-

tions i.e., in (21) we replace

_vt+l 3-v - _ v+l 3-v
X 2 X 2 X 2
RIS R DTS s i vl ey i v
2 2 2 2 2 2
The bracket gives now a convergent integral.
The other two terms can be compufed using
o -1
X dx _ 1
f v = 5 T@(a) (23)
e -1 ﬂ

0

From (20) to (23), we get for Iz(v+2) with b? = iM2

® -2
1=~ £(3) - 1—8—/-23 J———_dt = - M'.,n/— MpE “’4‘/7“%
62 e’th__l 2 /3'

v
/G’ 8 ] -%+1 (QNF)E' v+3‘/r_
MBt ' v oV 27 2 ,/3 2 T(2-v)
() (VsMB) —5—=r(2-u)
ZMB J r(—+l) 44n2g- 2 r(é—ﬁo

(24)

If we make a series development of 44in x and cos x , use

form (23) and take into account (See 6] p. 46)



CBPF-NF-085/83

% 2k-1 B 2k
, k 2 2k x
Lnsin x = &n x + kZl(-l) - (3R
2k-1 _
and  £(2k) = 2 7F[B,, | (see [6] p. 1074).

We finally get:

® -2 /Ehgt cos (/UL 2
16m /3. at t . 2 _ 22 0, +
- 5 (V'5M) = =~ 840 (—5—) 3
"1 | /3 ugt VELE
2 2 2
. /3 M
73 Mpt 3
+ /2 __lém ( KnShTrz dz
4 82 J nz
o}

2. We take finite

The last term in (24) has a pole at v
part in the usual way i.e, multiply by (v-2) and take the
derivative with respect to v. As we know that the theory is
renormalizable (see ref. |:8]) there is still an arbitrary
constant multiplying the residue, as an extra term, but this
constant will be taken care of by the renormalization prescrip-
tions.

We then get for IZ:

1 /3
3 77/ B
_ _ lérm Shmz _ 47w <32 2 23 2
12 " { dz z in — E‘;Q(3) +C.—2-M 3mMeLn 3 2M (26)

0
Where the arbitrary constant is fixed by renormalization con-
ditions.

We now go to I,. (egq. (18)) we just write the following

result which can be proved on exactly parallel lines to those wused

in deriving (26) .
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NB/ 27

{ Shrz 4 2
3 — 2 (1P 7

) ( &k b (KPP HP) = 162 dz z tn = 2 £(3) + mN? (1-Ln(BN) )

n / B 0 (27)

Note that, in order to compute I3, we need (27) for

2kL6 , N

= k? + 2M?
T L

2
2

= 2 2
N1 2M° + kL +

and then take the difference of both (infinitesimal for L+x),

The result is:

4k N, B
1, (k) — 8(k;) &n 25h —5 (28)
3/2.
M SL
As  S(k,) = - 2 aretg > (see ref. [[8]])

S

2-2-L
MZ

The integral over k will diverge for k, = «
In order to take care of this divergence, we renormalize by

substracting the divergent part at T = 0 (B =+ )

with which we have, for instance:

Z,f d’k £n(k*+N%) > 5%-J d% £n(k2+N2) = - % m N°®
n
a=3

We must add two counter terms corresponding to N, and N,

6 (k)

L

1/2 (29

I = 2T n3_n3y 2y =
3R (Ny=Ny) = ma(N*) = 2nk

—_— 2 2
3 (kL+2M )
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—-9-
We are finally left with:
éﬁZkL ) punl
_ _ 4mkL M _ —(kL+2M )B
JdkLI3(kL)T>!(I3+I3R)dkL —JdkL—jr—-Zantgz_zkz,04Ee J
MZ

(3)
which is a convergent integral and can be computed numerically
Forms (19), (26) and (30) solve the problem of computing (15).

We have seen in the previous paragraph that although we
started from ill defined divergent integrals, we were able to
arrive through analytic continuation to well defined expres-
sions. In particular, the combination of this analytic contin-
uation, with form (21) provides a convenient way to attack problems
in finite temperature fiéld theories arriving at the expression
of the partition function in such a way that it is in many
cases, more convehiently obtained than with the use of other

methods. (See also refs. [ 8], [[9]).
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