ISSN 0029 -~ 3865

CBPF-NF-084/88

A CHIRAL QUANTUM BARYON *
by

Juan A. MIGNACO and Stenio WULK'

Centro Brasileiro de Pesquisas FTsicas-CﬁPF/CHPq
Rua Or. Xavier Sigaud, 150 _
22290 - Rio de Janeiro, RJ - Brasil

ihstituto de Fisica, UFRJ
C.P. 88528 .
21944 - Rio de Janeiro, RJ - Brasil

*December 15, 1988



CBPF-NF-084/88

Abstract

We show that a classical soliton for the non-linear SU(2} sigma
model in the hedgehog configuration admits a stable solution, when
quantized through collective coordinates, which may be identified with
the nucieon. The whole approach depends on a single, dimensional and
arhitrary constant. Numerical results seem to converge for the mass

and for the right value of the weak axial coupling.

Key-words: Chiral scliton; Non-linear sigma model;

Skyrmeon.
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It is currently admitted after the work of several authors [1},
who revived the argument by Skyrme [2), that a baryon is &
soliton of a chiral theory.

Classical stability arguments seemed to require, bowever, the
introduction of an additional term to the non-linear sigma model

lagrangean (in the non-relativistic limit},

L= _.;_ I j dz Tr f;(a.vf)(aw), (1)

k=1

where U is a umitary operator:
vut =1

and f; is the usual pion-decay constant.
The additional term introduced by Skyrme,

1

- g3z [ Feet@OL VGO, (2

incorporated a dimensional parameter, e.

Several works [3] dealt with the phenomenology of this classi-
cally stable theory, and showed, after quantization, a reasonable
agreement for physical quantities when the hedgehog form for U

was used (spherically-symmetric ansats):
Uy = exp (i8 - 0F(r)}, (:3)
where 7, represent the usual Pauli matrices for SU(2) and

n = off] (4)
= LR (5)

k=1
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There are severa! point which deserve further attention. First,
since it 13 assumed that the effective chiral lagrangean must re-
sult from some more fundamental theory, namely, from QCD,
it is hard to see how to generate a term like (.2). Second, it is
difficult to ascribe a physical meaning to the new dimensional
constant in the game, ¢. Some recent work attempts to relate
it to the pion-decay constant, fy [4]. Third, if one uses the full
Skyrme lagrangean, the formal results for the description of chi-
ral dynamics at low energies do rot seem to depend on e [5].

We have lately addressed ourselves to the question of the
meaning of a theory without a Skyrme term [6]. In particu-
lar, we have stressed the point that the classical Euler-Lagrange
equation for F(r) is singular and introduces a dimensional con-
stant in the formalism. This constant carmes, in the classical
domain, the mstability of the non-linear classical sigma mode]

soliton. [t seems that former work overlooked this constant. In
fact, some feeling about it present in the work by Balachandran

et . [7], who introduced a kind of variational “shape” parame-
ter, accounting for the size of the soliton.

In fact, as we showed |6], this constant appears naturally
when one intends to solve the classical qua.tion of motion for
the lagrangean (.1) using the hedgehog SU({2) solution (.3):

d?F{r) + 2dFr _

5 — sin 2F(r). (.6)

To eliminate the first derivative, one uses

F(n =X (1)
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-3
and, calling
r =2z, (.8)
we arrive finally to
d* 2 .
T = Zin (%l) ' (9)

It is easy to verify that for the second denvative we arrive to an
identity, so it remains a dimensional free parameter. In order to

solve (.9}, we must require

x(0) =0 (-10)

X¥({0) = 0, +2nr, n=12,... (.11)

To have a scliton solation with winding number n,

FO) = -nx {.12}

x{0) = -2n=, (.13}

provided F(r) is zero at infinity, and we have at the end,

x(z) = ~2avz 4 X O X(ECOF), (19

where
X(s) = i:lf.a""” (.15)
X0) = ;j‘,‘f) 0 (16

and s = x"{0)z is a dimensionless variable. The first coeflicients

in the expansion of X(s} are
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~lym

H =1

1 1
= -5="1@

1 3 1
h = GE7=%
f = T 17
$ 7 TgI2-3°5 9,676,800
f = 13773 _ 73
8 T 10128.5-11  2,433,024,000
L= - 3337
& T 7 §,199,345,152,000

The appearence of the dimensional parameter x"(0) for the
solution of the soliton has remamed unnoticed to the authors
of previous work. [t seems, however, as we mentioned earlier,
that Balachandran and coworkers {1] were somewhat aware of
its necessity, when they introduced a variational ad Aoc shape
parameter. Besides, notice that this parameter should even be
included with the Skyrme term (Eq. {.2}), since it does not con-
tribute to the singularity at the ongin.

It turns out that the chiral angle itself, F{r), is in fact a
function of the dimensionless variable s, as seen replacing {.14)
in (.7):

F{r) = F(s) = —ax + -i-sX(a). (.17)

This new dimensional parameter, which, we stress, comes
from the consistency of the series solution at the origin for the
chiral angle, is intimately connected to the usual stability argu-

ment against the soliton solution for the non-lnear sigma model
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lagrangean. I we write the expression for the mass of the soliton,

My = daf? A e [fm (%)2 + 2in? F(r')] (.18)

in terrs of Eq. (.17) above, we find

M, = o ﬂx_‘}(ﬁi -L * g [%a”‘f"(a’) + 8sin? G 7(5'])]
(.19)

putting

F{s) = 2X(9) (.20)
and 7'(s) being its first derivative. The integral over the di-
mensionless variable & in Eq. (.19) is a pure number, and the

usual argument for the instability of the soliton, coming from

the replacement
v —
in Eq. (.18) translates into the mstability under a variation of
x"(o).
It i8 well known, though, that when quantizing with the help

of collective coordinates

U(rt) = A()Vs(r)Al()

= Co8 F(f) + ‘l.ff.ng(t]ﬂi M F(f}, (.21)

where D;;(t} are rotation matrices, the expression for the energy

of the quantized system becomes the one for a rotating top (see,
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for nstance, the lecture notes by Balachandran [7] or the article
by Adkins, Nappi and Witten in Ref. [3]),
l
where the “momentum of mertia®, A, is
16 5 f® 4 122
\=ol? f dr' 2 sin® F{r). (23)
0
Using Eq. (.17),
1 0,64, . 1
A= 2’-'{2ij de "3-8'2 sin? (zf(ﬁ')) - [24)

With this, Eq. {.22) takes the form

M= % +2§-}-ﬁ£3’ (25)

The quantization for the symmetric top as a fermion brings that
the possible values for J? (and for the isotopic spim, T¢ = J?)
are half integer.

It is easily seen that Eq. {.25) has a minimum in terms of
x"{(0). The only remaining fixed scale parameter in Eq. {.25) is
fx, the pion-decay constant. The values for x*{0) and the mase

at the minimum are

2 174
(o) = {g--(-z;—,)ab] I (.26)
4 [34,, y2y28° e (2
M = -3-[-2—921F) T] fr- .

We have immediately a prediction for the mass ratio of the

lowest states:
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.—7—
M(J = 1)
3l - 51/~ 405 ,
M= =S s, (.28)

which agrees rather well with the known experimental ratio for

the A resonance and the nucieon:

M(A)

MR = 1.32.... (.29)

[t may seem that we have lost any trace of the value of the
“baryon number”, or winding number, as it appears in the first
term of Eq. (.17). This is not the case, since asymptoticaily the
expression for X(s) is well determined.

[n order to see this, let us go back to the solution for the
chira] angle at infinity, looking for the solution of Eq. (.6). It is
readily seen that, with y = 1/z, we have

X2 = 9l
Kly) = y¥ly)
and, fimally,
K"(s) = —sin K(g), (30)

with the relation
F(z) = 3 K(y). (31)
The series solution of Eq. {.30} gives |
K(y) = Iner + LK"Y (y), (32)

with
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Yig) = Y k{K"(Q) Yo
’ =1
@K
K"0) = dygy)
=0
k[ = 1
115 1
b= s oHT=m
1 1
b= 3 S =g
T S
3 6, 209, 280

The winding number of the soliton is given by the difference
N=n- Baoy

8o, if n=1, in order to have N=1, n,, must be zero. The dimen-
sional pararaeter x"(0) translates at infinity in the dimensional
parameter K"(0)(~ —x"(0)~?). Then, as the radial coordinate

grows to infinity,
K*{0
Fr-— J] (.33)
Comparing Eq. (.33) with Eq (.17}, we see that at infinity,
X(s) ~ +222 4 0fs~1). (:34)

The behavior at infinity resulting from Eq. (.32) allows one
to have mformation about the axial current coefficient, gy, as

shown by Adkins, Nappi and Witten [3],
8 '
ga= §24xﬂK’ {0). (-35)

We have begun to work out numerical resulis for the SU(2)
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chiral theory. They are at the moment not complete, but we
think they deserve ‘some consideration.

tﬁ order to exploit our knowledge of the solutions by power
series expansion of Eqs. (.9) and {.30), we propose a systematic
approximation using Padé approximants [8). They are in this
case of a particular type, since we need to enforce the conditions
fixing the soliton solution to be of winding number one. Defining

ny +na+nga 4+ npyaM-l

/N, (e} = ldia+dzad +--- +dya¥ (:39)

we find that the only approximants satisfying the conditions

X{¥,Mj(0) = 1
4ix -2
N[N M) ~ 2240(sm)
are those with N =25 +1, M= 24,5 =1,2,.., 1., [3,2], [5,4],
[7.6],.... For instance, {3,2] for X(s) uses the first coefficient

only, and is particularly simple:

M40 = (10 5) (14 42+ (;;)’)“. (a7

After determining the coefficients in the Padé approximant (.36},
we calculate the integrals ¢ and & in {.25) and find the values for
x"(0) and M. To have the axial vector coupling, we use the fact

that the asymptotic form for the Padé approximants is
Flo)~7¢)[Njo* (0 ~0), (.38)
with o = {3 and

exN] = —x (i;i;z - ;‘.:_;:) . (.39)
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The first results are (with f,=0.067 GeV):

x"(0){fs) x'{0}(GeV) Mn(fi) Mn(GeV) ga
[3,2)]| 1982 13.00 9964 06676 0.891
5,4} 3711 24.87 8.693 05824 1.087
(7,6]| 624.1 41.82 8166 05471 1162

We see that the above results show a systematic trend, and
farther work is currently being done increasing the order of the
approximanis {that is, using more information about the soliton
solution) and enlarging the flavor group. The dimensional pa-
rameter X0} is rather farge, showing the importance of short
distance behavior. The value for the mass is rather low, and
seems {0 converge to a value around .50 GeV for our chosen value
for fy. Interestingly, the results for the axial weak coupling look
nice, and may converge to the right value.

We think, however, that the above results strongly indicate

- that it is possible to obtain a consistent description of low-energy
hadronic physics with the information available from
current algebra, summarized by the non-linegxr s$igma

mel. lagrangean, Eq.(1).

The need to uze a minimum of the quantum energy for a
description of baryons does not seem to be quite extravagant. It

arisez from the exact behavior of the hedgehog classical solution.
i, on the other hand, one expects to describe low-energy
hadron physics from a dynamical quantum theory like QCD

through an effective lagrangean, experience with two dimensions
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[9] seem to indjcate that quantum (loop) effects are relevant.
One may also recall that the simple bydrogen atom is classi-
cally unstable, and the crudest quantum condition makes it into
a stable, quantized system. The comparison may look exager-
ated, but it is worth to remember that not always the quantum

system follows the paths suggested by classical dynamics.

The authors wish to thank J. S. Helman, L. J. Mignaco and J.
E. Stephany Ruiz for their help in the computation of numerical
results. Useful conversations with Prof. A. P. Balachandran,
and his interest on this work, are warmly acknowledged.

When the first draft of this article was complete, we re-
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