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ABSTRACT

The Schwinger model, when quantized in a gauge non-invariant way exhibits a dependence
on a parameter a (the Jackiw-Rajaraman parameter) in a way which is analogous to the
case involving chiral fermions (the chiral Schwinger model). For all values of a # 1, there
are divergences in the fermionic Green’s functions. We propose a regularization of the
generating functional Z[n,7, .J] and we use it to renormalize the theory to one loop level,
in a semi-perturbative sense. At the end of the renormalization procedure we find an
implicit dependence of a on the renormalization scale p.
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1 Introduction

The Schwinger model [1] is Quantum Electrodynamics with a single massless Dirac fermion
in two-dimensional space-time. Since it was shown to be exactly solvable, many people
studied the model trying to gain intuition to deal with various problems which are present
in particle physics. Breakdown of global chiral symmetry through the U(1) anomaly,
charge shielding, quark trapping and the existence of # vacua are among the phenom-
ena which are present [1]-[5]. Both operator and functional methods were successfully
employed to study various aspects of the model [2], [6]-[16].

All these studies were performed in a gauge invariant way, that is, the quantization
of the fermionic degrees of freedom (the computation of the fermionic determinant) was
performed in such a way that gauge symmetry was preserved at the quantum level.

However, when we consider Weyl instead of Dirac fermions (the chiral Schwinger
model), a consistent and unitary quantum theory emerges [17] in spite of the fact that
gauge invariance is lost (because of the gauge anomaly [18]). The resulting quantized
model is dependent on a parameter a (Jackiw-Rajaraman parameter) which is introduced
at quantum level, and can not be fixed a priori to any value. The fermionic Green’s
functions are divergent [19] (for any value of a) and it is readly seen that a fermionic wave
function renormalization is sufficient to turn the theory finite. After renormalization, we
still expect that Green’s functions depend on a. The situation is quite disturbing, as it
would indicate that the quantization of the theory could not be done in a unique way.

On the other side, it is well known that the ambiguities on the Green’s functions of
a renormalizable theory are not present at the S matrix level [20]. These ambiguities are
parameterized by a massive parameter p, which controls renormalization group equations.
The Green’s functions are pu dependent, but this dependence is cancelled in the 5 matrix
by a compensating behaviour of the residues of the propagators of the theory.

At this point, the central idea of this paper emerges: if we could relate the parameter
a with p, a possibility would appear that the dependence on @ could be cancelled in
the computation of physical quantities. If this could be possible, the quantization of
the theory would give always the same result, thus allowing us to choose the value of a
according to our convenience.

Back to the case of the Schwinger model we see that there is a privileged value of a for
which we do not need to perform any renormalization, because the whole theory is finite.
This value is @ = 1, and it corresponds to regularizations which preserve gauge invariance.
However, if we do not require gauge invariance, we have the same divergence structure
that is present in the chiral Schwinger model. So, the Schwinger model turns out to be
the perfect scenario to test the conjectures above. For a = 1 we have access, in this case,
to a complete non-perturbative solution of the model. This solution can be compared to
the case a # 1, where we have only approximate solutions, obtained by semi-perturbative
techniques (this happens because we can only solve the model in configuration space,
while renormalization is performed in momentum space). This situation is better than
the one that we find in the context of the chiral Schwinger model, where there is no exact
renormalized solution, up to now.

The paper is organized as follows: in section 2 we present a calculation of the most
relevant Green’s functions and we show the structure of the divergences. In section 3
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we give a regularization for them, in the gauge non-invariant formalism. In section 4 we
study the Ward identities and in section 5 we perform the renormalization of the model.
Finally, in section 6 we present our conclusions.

2 The Schwinger model

The Schwinger model is defined by the following Lagrangian density

LI, A) = — T Fu P i+ e o (1

The effective action W[A,] is !

Wil = /d;z;d% exp[i/d:z; (i@ +ed )¢]
= detiD , D=1id+ eA. (2)

We calculate the fermionic determinant using a prescription which is gauge non-invariant [18,

22]. Thus, we find W[A,], given by

1 L €2oHd”
WA = fao 34,00 w9 = SO A, )
where m?(a) is
2 ¢’
m?a) = (a+1). ()
The generating functional of the model is
Z[n,77, J) =N [dA,dipdp exp [l/dl' (Lo, A+ T + by + JM“)] : ()

As we computed W[A,], we can integrate over the fermion fields and get

Zn,,J] = /dAM exp [z/d:z; (%AMF“”AU + JMA“>]

cexp |~ faedy )6 A | (6)

Here dz means dz?. Qur conventions are
1 0 y y 0 1
Juv = ( 0 —1 ) = gN ’ = ( -1 0 ) = —€uv-

(9 = 20", wi=v , nl=—m.
{’Yua’Ys} =0 ) Y5 = Y071, ’VsT =75 -
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where G/(x,y; A) is the two-point fermion Green’s function in the external field A,. This
can be computed and is

Glo,yi A) = exp [—ie/dz Aﬂ(z)jﬁ(z,x,y)] P Sp(z—y) +
+ exp [—ie/dz AM(Z)ji(Z,x,y)] Py il — ). (1)

Here Sy satisfies i@, Sp(x —y) = 6(x —y), and j§ and I'* are given by

(5 ,9) = (0 + 9)Dp(= — 2) — D= — )] 5
ey = () - 00 - S Vo). )

Furthermore, Py denotes the projection operator on the right-(left-)handed chiralities

I+ I — s
P, = P = 10
+ 9 9 9 ’ ( )
while én stands for
Dy = €0 . (11)

All the correlation functions of the theory can in principle be exactly calculated in con-
figuration space, but not in momentum space, where one does not know how to bosonize
directly the theory.

The computation of the photon propagator from (6) is straightforward and yields

O1T Au(2) A, (y)|0) = —i / (jf)2 Gt () =)
. 1 k., 2r kuk,
GulF) = m(gw— E )‘ﬁ = (12)

We observe that this propagator has a pole in m?*(a), that is, the photon acquires mass
after the quantization of the theory. We observe the explicit dependence on a of the
photon mass, which leaves it indefinite. Moreover, the photon propagator is divergence
free. Its high-momentum behavior is similar to the one in Proca’s theory.

Now we calculate the fermion propagator, starting from (6). We arrive at

(O[T¢(2)e(y)|0) = Gz —y) .

. 21 [ dk 1 —emitEY)
Glr—y) = iexp {— /(271_)2 1 } (13)

a—1

X exp {—@' 2 /(Zd:)z ki(gze:;iz:j)) } Sp(z —y).
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From (13) we see that the fermionic propagator has an UV logarithmic divergence, but
is free of IR divergences. This divergence is better understood in momentum space. The
Fourier transform is not possible to be calculated. However, we can see that the following
differential equation is satisfied

(B¢ [y FR670 ) 6o =) = b ) (1)

where f(k) is given by
27 1
e2(a—1) k2 k2(k? —m?2(a))

This equation expressed in momentum space allows one to find a recursive equation for

f(k) =

(15)

the fermion propagator G(p)
Glp) = 5 e [ ) KG—b). (16)

We expand the above equation for G(p) in powers of ¢?, and show that it gives a loopwise
expansion by using the exact photon propagator, with the n loop order associated to
h™ [21] as in the usual case. Writing % explicitly, we get

1 - i , [ dk 1, 1
RO = 5 net [ ) Sk (1)

o [k ds L 1
‘””/(%)2(%)2“““Wﬁ—m—k—ﬁ+"'

A power counting analysis of expansion (17), shows the presence of an UV logarithmic

divergence in the fermion propagator. This divergence is similar to the one present in a
Proca theory with fermions, due to the bad high-momentum behavior of the exact photon
propagator. This loopwise expansion will allow us to renormalize the theory.

We can calculate also the three-point Green’s function

(0T (2)b(y)Au(2)[0) = Gula,y,2)

: dk —ik-(z—z
Gulz,y,2) = @e/wgu(k)[e k)

with ¢, (k) given by

SR Gl —y), (18)

2k vsk
k — Iad o Iad
958) = S TR T IR — mi(a))

In momentum space éﬂ(p, —p—q,q) = éﬂ(p, q)

Gup.q) =iegulq) |Glp+q)— G(p)| . (19)

We see that the divergence in this function is due to the fermionic propagator. It can
be easily seen that only Green’s functions with fermionic legs will have UV divergences.
A careful analysis leads us to the conclusion that these UV divergences do not have
perturbative origin [23].
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3 Regularization

In this section we will regularize the theory using the point of view which is called gauge
non-invariant formalism [5] where one does not introduce a Wess-Zumino field to restore
gauge symmetry [24, 25]. However, at least for the case dealt with in this paper the
results are coincident [23]. In the gauge non-invariant formalism, the vector field A, is
decomposed in his longitudinal and transverse parts, so

eA, = 0.p — aNMb (20)

We make a change of fermionic field variables, with the purpose to decouple the longitu-
dinal part of A, from the fermion field,

p=ery  p=Pe (21)
(2
t(a—

The fermionic measure is not invariant under (21), and changes as

dpdy = dp'd exp[ ) /d:z; aupa“p] . (22)

Puting into the generating functional (5), we obtain

2] = [dpdotids exp[ [z (—qsm 6+ Tip — oyt (23)

+ (a — 1) au/’aﬂp + ﬁeip@b + @6_”77 + _Juaup - _Juéuqb >] ‘
Ar € €

The divergence in the fermionic Green’s functions arises when we integrate over the
longitudinal part of A, (the field p), due to the bad behavior, in the UV limit, of his
propagator (as k=%). To regularize the theory, we notice that we could make everything
finite if we had a better UV behavior of the p propagator. We can do this by means
of Pauli-Villars regularization. We add to the generating functional a new field g which
has a large mass A? [26] (A® — +o00). This defines the regularized generating functional
Za[n,7,J], which reduces to Z[n,7, J] in the limit of infinite A. After manipulations into
the regularized generating functional, we get

Zala o d] = [dpdotds exo [ [ (%«sm% LT+ ()

1
0 A e 4 T4 Lr0p - Lo ).

Now the propagator of the p field has a better UV behavior (7%, for finite A?). We are
interested in the way the original action changes after regularization. Then, we come back
to the original fields of the theory,

=y,
b=,
dbd = dp'di exp [-% /d:z; aupa“p] : (25)
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and perform the inverse transformations p = %“A“ , ¢ = %“A“, to get the regularized
generating functional in terms of the original fields of the theory (1),

Zal 7] = [dA,didd exo ( [ie alo AT+ s A7+ En) L@

where L[, ), A,] is the Lagrangian density for the regularized theory

e*(a—1)

o (0-4), (27)

R ST R

L‘A[@Z)vav AM] = 4

We see a new term into the Lagrangian density, equivalent to a Lorentz gauge fixing
condition with a gauge parameter which is ¢ dependent and proportional to A=%. This
new term allows us to regularize the full theory.

From (26), we calculate the regularized Green’s functions. The photon propagator is

. i k k 1 2w A? k. k
U0, [ — y— 4= - — 2
GM ( ; ) 2 _ m2(a) (gu ) ) 62(a _ 1) kQ(k2 — A2) ) ( 8)

and the 1PI two-point bosonic function is

- , e*(a—1) D 1
P9 (ki A) = —g™ (K — mP(a)) + (1 B W) B e (29)

Both functions are finite when A? — 400, as in the non-regularized theory.
The regularized fermion propagator is given by

, 12w A? dk 1 — e~ik(==y)
Gz —y; A) = zexp{a_l /(271_)2 kz(kz—/\z)} (30)

X exp {—@' e? /(Qd:)z ki(zzej:i:z))) } Sp(z —y).

In momentum space the regularized fermion propagator é(p; A) also satisfies the equation

. i, [ dk 1
Gl ) = 5 — e /W (k) 5 kGl = i), (31)

where fx(k) is given by

27 A? 1

falk) = e2(a— 1) K2 (k> =A%) Bk — m?(a))’ >

If we expand the above equation for é(p; A) we get

. i , 1,1
G<p;A>=]—b+he/( )fA()p%p gt (33)

g [0 ds Ll | ,

1
h
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A power counting analysis of the terms above shows that the UV logarithmic divergence
is controlled. The regularized 1PI two-point fermionic function is

~ Lo [ dh o
() = 14 [ ik f g + o) (34)

and the regularized three-point function

: dk —tk-(z—x —tk-(z—
Gu(x,y,z;A) = Ze/(Qﬂ_)z gﬁ(k) [e B emid y)} Gz —y; A), (35)
with gﬁ(k) is given by
2r Ak, 75% (36)

(k) = T 2(a—1) k(K2 =A%) k(k? — m2(a))

In momentum space éﬂ(p, —p—q,¢;N) = GL(p,q; A) is such that
Coulpa ) =ieglla) |Glp+a:0) = G A)| (37)

and the regularized 1PI three-point function fu(p, q) is
= DAY Vuf [+ ) SV
Uu(p,g;A) = e 2 I'(p+a¢:A)—D(p;A)|. (38)

So we showed that the 1PI three-point function is regularized if the 1PI two-point fermionic
function is regularized. We could show, in a similar way, that all the fermionic Green’s
functions are regularized too. Thus, we only need to renormalize the fermion two-point
function, as we will do in the next sections.

4 Ward Identities

We start from the regularized generating functional (26), Z[7,7,.J]. We make the fol-
lowing gauge transformation into this regularized generating functional,
1
Ay = Aut —0M(x),
e
o= Y)Y, (39)

with infinitesimal A(z). In our framework, the fermionic measure is gauge non-invariant
under a gauge transformation, then it changes as

dpdf —  dpdp exp [_% /d:z; (%)\DA +ed Wl)] (40)
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With this, we get the Ward identity satisfied by the generating functional of the 1PI
functions 'z 1, ¢, AL,

6T C6Ta = 1. 6Ty
7 T) —1— x —o#
o T S T ) ]

_ %(a 1 (1 n A2> 0" Au(z).

- (11)

Now we can calculate the Ward identity satisfied by the 1PI two-point bosonic function
(in momentum space),

s

ke T (ks A) = 26—2(a —1) (1 - i—i) k. (42)

We see the non-transversality of the photon propagator, which is the sign of a gauge
anomaly. Then, we obtain another important Ward identity, which we have seen to be
satisfied by the 1PI two-point fermionic function and the 1PI three-point function

éq“ Pu(pog; A) = T(p+ ;A) = T(ps A) . (43)

This identity can be obtained by direct manipulation from equation (38). It shows that
we only need to renormalize the 1PI two-point fermionic function. This Ward identity
will be important for analysis of the renormalizability of the theory.

5 Renormalization

In the usual way, we express the regularized Lagrangian density (27) in terms of the
renormalized quantities and its respective renormalization constants

1 L, Zre*a—1) —. —

EA = _ZZA 171“,17M — Z—iw(auAu)Q + Zd, ¢Z@¢ + Z6 GAM@Z)’}/M@Z) . (44)

We take the a parameter to be finite, Z4 is the renormalization constant of the A, field,

Zy 1s the renormalization constant of the 1 field and Z, is the charge renormalization

constant. A, and 1 are the renormalized fields, e is the renormalized coupling constant.
We define the bare fields A% and ,, and the bare coupling constant ¢, as

AP = \JZAAY . =D, e,

Z.

73 €

== 15
7.7 (45)

The object of the renormalization procedure is to determinate 7y, Z4 and Z, that make
all the Green’s function of the theory finite. Possible ambiguities in the choice of these
constants, will be parameterized through the imposition of renormalization conditions.

The pure bosonic Green’s functions do not have UV divergences. Then, we do not
need counterterms to renormalize them, which means

Z4=1. (46)
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We remember the Ward identity (43) satisfied for 1PI bare functions

1 . Ny Ny
— " Lulp, s A) = Tlp+qA) —T(pA). (47)
Substituting in this equation the relation between the bare and renormalized 1PI func-
tions,
La(p) = ZyT(piA) (48)
Ir(p,q) = ZyI"(p,q3A), (49)
we obtain
J . = .
~0uli(pq) = Z.2;" |Ta(p+4) = Tr(p)] (50)

On the other side, we can verify that the renormalized functions also satisty the Ward
identity

équ P(p.a) = Tr(p+a)—Tr(p) . (51)
If we compare equations (50) and (51), we obtain
Zo = Zy. (52)
Coming back to equation (45), and remembering that Z4 = 1, we see that
e, =€ . (53)

We see that the coupling constant of the theory is not renormalized, even when the theory
is gauge non-invariantly quantized. This shows that the universality of the electromagnetic
interaction, usually expressed by eA* = e, A", can be preserved into a gauge non-invariant
renormalization scheme. In particular, we see that the coupling constant will not depend
on the energy scale p selected to impose the renormalization conditions. Hence, we have
a null Callan-Symanzik beta function

d
I=ngielm = =0, (54)

5.1 Semi-perturbative analysis

We start again from the Lagrangian density L£a[i, 0, A,] (27),

— 1 , ez(a— 1)
Lalo, 0, Ay = ——F F* — AT

I (0-A) + i)+ e ) (55)

With a perturbative calculation in mind, we get the free photon propagator

e 1 G kK, 2r A?
—iG, (k) = — kg —1 24 (eQ(a—l)_l . (56)
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The free photon propagator (56) diverges quadratically in the limit A — 4o00. If we insert
the propagator calculated at tree level in the perturbative calculation of the correlation
functions, we will make the ultraviolet behavior of the individual graphics worse in each
consecutive perturbative order, implicating an apparent non-renormalizability. However,
the exact photon propagator does not exhibit that divergence, which is cancelled when we
add the terms of the geometric sum that defines it. This shows that, in this anomalous
theory, the exact or complete photon propagator has to be considered, the tree level of
the bosonic sector being indefinite.

However, as we saw [21], the expansions (33) and (34) are equivalent to a loopwise

2n

expansion using the exact photon propagator, and in this case a power e corresponds

to A", or n loops. We can account for the i powers that appear in the expansions (33) or
(34), if we consider that

fermion propagator — h

exact photon propagator — A’

vertex — J3/2

5.2 Renormalization to 1-loop order

Now, we can calculate the 1PI functions to 1-loop order (in this semi-perturbative sense)
and impose renormalization conditions, to determinate the finite part of the renormaliza-
tion constants.

The 1PI two point fermion function (34) I'(p; A) to 1-loop order is

. h A? h m?(a) 5
I'ppA)=p|1+———In|l ——|————1In|l — I
(p; A) Jb[ +2(a—1) " p? 2(a+ 1) " p? +O()
(57)
The renormalized T'g(p) function is given by
Ca(p) = ZyT(piA), (58)

where Z, is the renormalization constant of the fermion field. The next step, is the impo-
sition of the renormalization conditions that can fix the finite part of the renormalization
constants.

At this point we must ask the following question: how many renormalization conditions
are necessary to parameterize the ambiguities of the theory? The ambiguities in the finite
part of correlation functions manifest themselves in two circumstances into the Schwinger
model. One of them is in the determination of the Z, constant. Another is present in
a massive counterterm ém?(a)A,A*, generated dynamically and finite. The difference
between the two situations is that the second does not represent the finite residue of any
renormalization of mass, since it does not correspond to a multiplicative renormalization
(classically, the photon mass is zero). This does not imply, however, that the coefficient
of this counterterm does not have to be fixed with the help of renormalization conditions,
as happens to any correlation function. We conclude that we need two renormalization
conditions on the theory, one to parameterize 7, and another to make the same to a (which
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is obviously related to the massive counterterm mentioned above). The renormalization
condition, compatible with the tree level, that will fix Z; (as a function of p) is easily
chosen

Fulr)|_ = (59)

Using it, we get Z, to 1-loop order,

h A? h m*(a)
Zy = l——hn|l—-—|4+——In|l - O(h?). 60
v Z(a—l)n u? +2(a—|—1)n u? ‘—I_ (A7) (60)
To this order, we get I'p as
- h 1 —A?/p? h 1 —m?*(a)/p?
I'r(p) =p |1 1 — h?)| .
w0) = |1+ g n‘l—AQ//ﬁ 2+ 1) n‘l—m%a)/m +oi)

(61)

The job is less obvious when we deal with a. We note that, due to equation (56), there
is no tree level in the bosonic sector because the free photon propagator is divergent. We
observe, however, in equation (60), that Z, involves a. We can solve the problem by
imposing another renormalization condition over fR(p), that may stablish a relationship
between a and p. The more natural condition, compatible with the fermionic tree level is

9 .

5 )], =1 (62)

‘ﬁ=%

Doing this, we obtain the following equation at 1-loop order (for finite A?),

h( LS, S i )+O(ﬁ2):0. (63)

a—1p%—A? /ﬂ—%(a—l—l)

To solve this equation, we must consider the following restrictions on the a and g
parameters

i) a# 1, due to the gauge non-invariant nature of the regularization scheme;

2
i) u?#AN ) pt At ;—ﬂ_(a + 1), points where the function (61) is singular.

So, we can isolate a in this equation,
1 1
a = 1—2A2<—2——2>, (64)
© mgi

2 s

where m; is
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myg; 1s the mass that would be generated dynamically if we would have made a gauge
invariant quantization, that is, with ¢« = 1. The above equation can be solved in two
ways:

i) For u? fixed, (64) defines a as a divergent function of A%, This would implicate the
need of a mass renormalization for the A, field. It does not correspond to the explicit
computation of the 1PI two point bosonic function and to the fact that « is finite. This
eliminates this solution.

ii) The second option is to parameterize p? as a function of A? such that equation (64)
produces a finite limit when A? becomes infinite. The most general parameterization is

1 1 &, m?; 1
E:W[H?AZJFO(P)} (66)
gt

given by

where &; is a finite coefficient, independent of A% So a becomes

C o neo(L) -

remaing arbitrary, but related to p? through é;. However, u? becomes fixed, in the limit
A? — +oo (that has to be taken in the end of the calculus), as

:uz = mfyi? (68)
but, @ remains arbitrary. The energy scale, where we have to impose the renormalization
conditions, is fixed exactly in the value of the mass dynamically generated when the theory
is quantized in a gauge invariant way.

6 Conclusions

We have seen, through the example of the Schwinger model, how to renormalize an anoma-
lous gauge theory. The main feature is that the theory is renormalizable, in the usual
sense, if the complete photon propagator can be computed. This could be a good starting
point to attack the same question in four dimensions, if we could estimate or take into
account the main characteristics of the exact photon propagator.

One of our most interesting results, concerns the dislocation of the renormalization
group parameterization from g to a. This gives us the hope that the S matrix of the theory
is independent of a, which would show that one could quantize the theory preserving or
not gauge invariance, to obtain the same results. One indication for this is the fact that, in
the regularized version of the theory, the dependence on « is completely contained in the
cut-off dependent “gauge fixing” parameter. However, one must be careful in analysing
this, because of the non-gauge invariant nature of the quantum theory. It is necessary to
remember here that we are not fixing the gauge (we do not have the right to do that, it
is an anomalous theory), but regularizing divergences of non-perturbative nature.

There are two complementary directions to investigate. One is to look for the new
version of the Callan-Symanzik equations, in terms of a. This seems to be a highly non-
trivial task, as the bare quantities depend on @ (one can remember that an usual way
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to arrive at the Callan-Symanzik equations is to consider the bare Green’s functions as
p-independent, take their derivatives with respect to p as zero and relate them with the
renormalized ones). Perhaps one way out of this is to compute directly the a-dependence
of all the quantities involved in the computation of the S matrix.

The other direction is the one that points to the chiral Schwinger model. In this
context, as there is no privileged value for a, it would be very interesting to investigate
if physical predictions depend or not on it. Of course, it is necessary to first discuss
and clear the questions above, in the context of the Schwinger model. Progress in this
direction will be reported elsewhere.
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