A NEW FAMILY OF FUZZY OPERATORS AND THE ASSOCIATED BREAK-COLLAPSE METHOD

Constantino TSALLIS
Centro Brasileiro de Pesquisas Físicas - CBPF/CNPq
Rua Xavier Sigaud, 150
22290-180 - Rio de Janeiro - RJ, Brazil
e-mail: tsallis@cat.cbpf.br

Abstract

We introduce a new family of fuzzy operators which satisfies all the standard requirements and contains, as particular cases, both Hamacher and Sugeno algorithms. In addition to this, we show that the Break-collapse Method (used in graph theory for some magnetic models) is applicable for this operators. The procedure is illustrated on the Wheatstone Bridge topology.

Key-words: Fuzzy logic; Hamacher and Sugeno algorithms; Break-collapse method.

1 BASIC DEFINITIONS

For general reviews of Fuzzy Logic see [1, 2, 3].
An operator $n:[0,1] \rightarrow[0,1]$ is called a negation (or involutive complement) when it satisfies the following properties:

Boundary conditions: $n(0)=1$ and $n(1)=0$.
Nonincreasing monotonicity: $\forall a, b \in[0,1], n(a) \leq n(b)$ if $a>b$.
Involution: $\forall a \in[0,1], n(n(a))=a$.
An important parameterized family of negations is due to Sugeno (page 39 of [2]):

$$
\begin{equation*}
n_{\alpha}(a)=\frac{1-a}{1+\alpha a} \quad(\alpha>-1) . \tag{1}
\end{equation*}
$$

The commutativity, associativity, and monotonicity properties for an operator ∇ : $[0,1] \rightarrow[0,1]$ are described as:

Commutativity: $\forall a, b \in[0,1], \nabla(a, b)=\nabla(b, a)$.
Associativity: $\forall a, b, c \in[0,1], \nabla(a, \nabla(b, c))=\nabla(\nabla(a, b), c)$.
Monotonicity: $\forall a, b, c, d \in[0,1], \nabla(a, b) \leq \nabla(c, d)$ if $a \leq c$ and $b \leq d$.
A operator $\mathrm{T}:[0,1] \rightarrow[0,1]$ is called a t -norm when it is commutative, associative, monotonic and has 1 as neutral element:

Neutral element: $\forall a \in[0,1], \top(a, 1)=a$.
A operator $\perp:[0,1] \rightarrow[0,1]$ is called a t-conorm (or s-norm) when it is commutative, associative, monotonic and has 0 as neutral element:

Neutral element: $\forall a \in[0,1], \perp(a, 0)=a$.
From the above properties we derive
Absorbing element: $\forall a \in[0,1], \top(a, 0)=0$.
Absorbing element: $\forall a \in[0,1], \perp(a, 1)=1$.
A t-norm T and a t-conorm \perp are said to be dual in relation to a negation operation n when they satisfy the De Morgan relations, given by $n(\top(a, b))=\perp(n(a), n(b))$ and $n(\perp(a, b))=\top(n(a), n(b))$.

An important parameterized family of t -norms and t -conorms is described by Hamacher[4] operators:

$$
\begin{gather*}
\mathrm{T}_{\gamma}(a, b)=\frac{a b}{\gamma+(1-\gamma)(a+b-a b)} \quad(\gamma>0) \tag{2}\\
\perp_{\gamma}(a, b)=\frac{a+b+(\gamma-2) a b}{1+(\gamma-1) a b} \tag{3}
\end{gather*}
$$

These operators are dual in relation to the negation operator $n(a)=1-a$.
Let $\mu_{A}, \mu_{B}: X \rightarrow[0,1]$ respectively denote the membership function of fuzzy sets A and B in X. Then the intersection, union and complement of fuzzy sets are given by:

Intersection: $\mu_{A \cap B}=\top\left(\mu_{A}(x), \mu_{B}(x)\right)$
Union: $\mu_{A \cup B}=\perp\left(\mu_{A}(x), \mu_{B}(x)\right)$
Complement: $\mu_{A^{c}}=n\left(\mu_{A}(x)\right)$

2 PROPOSED OPERATORS

Let $a, b \in[0,1]$. The following parameterized families of operators are proposed:

$$
\begin{gather*}
\mathrm{T}_{\gamma, \lambda}(a, b)=\frac{a b}{\gamma+(1-\gamma)(a+b-a b)} \quad(\gamma>0) \tag{4}\\
\perp_{\gamma, \lambda}(a, b)=\frac{a+b+(\lambda-2) a b}{1+(\lambda-1) a b} \quad(\lambda>0) \tag{5}\\
n_{\gamma, \lambda}(a)=\frac{\gamma(1-a)}{\gamma+(\lambda-\gamma) a} \quad(\gamma>0, \lambda>0) \tag{6}
\end{gather*}
$$

$\mathrm{T}_{\gamma, \lambda}$ is the dual of $\perp_{\gamma, \lambda}$ in relation to $n_{\gamma, \lambda}$.
The proposed families of operators have some interesting characteristics:
. When $\lambda=\gamma, \top_{\gamma, \lambda}$ and $\perp_{\gamma, \lambda}$ reproduce[3] Hamacher t-norm and t-conorm operators (i.e. $\perp_{\gamma, \gamma} \equiv \perp_{\gamma}$ and $\left.T_{\gamma, \gamma} \equiv T_{\gamma}\right)$.

- When $\gamma=1$ and $\lambda=\alpha+1, n_{\gamma, \lambda}$ reproduces Sugeno negation operators (i.e. $n_{1, \alpha+1} \equiv n_{\alpha}$).

In fact, this case precisely corresponds to the composition algorithms[5] associated with the Potts ferromagnet, which in turn contains as particular cases the Ising ferromagnet $(\lambda=2)$, bond percolation $(\lambda=1)$ and resistors $(\lambda \rightarrow 0)$).
. Equation (4) is the most general ratio of bilinear forms ${ }^{1}$ which is commutative, with neutral element 1 and absorbing element 0 .

Let the regularized membership degree of a be defined as

$$
\begin{equation*}
r(a)=\frac{a}{\gamma+(1-\gamma) a} \tag{7}
\end{equation*}
$$

a monotonically increases from 0 to 1 if and only if the same happens for $r(a)$. The inverse transformation of a is given by

$$
\begin{equation*}
a=\frac{\gamma r(a)}{1+(\gamma-1) r(a)} \tag{8}
\end{equation*}
$$

Let us employ the following notation in the remainder of the text: $\mathrm{T}_{s} \equiv \mathrm{~T}_{\gamma, \lambda}(a, b)$, $\perp_{p} \equiv \perp_{\gamma, \lambda}(a, b), a^{c} \equiv n_{\gamma, \lambda}(a)$ and $a^{\prime} \equiv r(a)(s$ stands for series and p stands for parallel).

Equation (4) can be elegantly rewritten as follows:

$$
\begin{equation*}
\frac{\mathrm{T}_{s}}{\gamma+(1-\gamma) \mathrm{T}_{s}}=\frac{a}{\gamma+(1-\gamma) a} \frac{b}{\gamma+(1-\gamma) b} \tag{9}
\end{equation*}
$$

or, in terms of regularized membership degrees, as

$$
\begin{equation*}
\top_{s}^{\prime}=a^{\prime} b^{\prime} \tag{10}
\end{equation*}
$$

which is in the form of the "probabilistic" t-norm!
In relation to the negation we have

$$
\begin{equation*}
\left(a^{c}\right)^{\prime}=\frac{1-a^{\prime}}{1+(\gamma \lambda-1) a^{\prime}} \quad(\lambda>0) \tag{11}
\end{equation*}
$$

In relation to the proposed t-conorm we have

$$
\begin{equation*}
\perp_{p}^{\prime}=\frac{\perp_{p}}{\gamma+(1-\gamma) \perp_{p}} \tag{12}
\end{equation*}
$$

hence

$$
\begin{equation*}
\perp_{p}=\frac{\gamma \perp_{p}^{\prime}}{\gamma+(1-\gamma) \perp_{p}^{\prime}} \tag{13}
\end{equation*}
$$

We also have that

$$
\begin{equation*}
\left(\perp_{p}^{\prime}\right)^{c}=\left(a^{\prime}\right)^{c}\left(b^{\prime}\right)^{c} \tag{14}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\perp_{p}^{\prime}=\frac{a^{\prime}+b^{\prime}+(\gamma \lambda-2) a^{\prime} b^{\prime}}{1+(\gamma \lambda-1) a^{\prime} b^{\prime}} \tag{15}
\end{equation*}
$$

which is in turn equivalent to (5).

[^0]
3 BREAK-COLLAPSE METHOD

Let us illustrate the Break-collapse Method (BCM[5]) with a particular two-terminal graph, namely the Wheatstone Bridge. This method is however valid for all (planar and nonplanar) two-terminal graphs.
$W \equiv$ Wheatstone bridge $=$ two terminals, one "top" and one "bottom"; 5 bonds (a, b, c, d, e) between these two terminals; the "left" bonds are a and b; the "right" bonds are c and d; the central bond is e; bonds a and c join the "top" terminal; bonds b and d join the "bottom" terminal.

$$
\begin{equation*}
t_{W}=\frac{N_{W}}{D_{W}} \tag{16}
\end{equation*}
$$

We wish to calculate N_{W} and D_{W} through simple topological operations on the graph. We choose anyone of the 5 bonds in order to break-collapse it. The result will NOT depend on our choice! In the present illustration we shall choose the bond e for break-collapsing.

BROKEN GRAPH: we take $e=0$, hence the graph becomes two parallel branches (between terminals), the "left" one is a series array of the bonds a and b, the "right" one is a series array of the bonds c and d. It follows

$$
\begin{equation*}
t_{b}=\frac{N_{b}}{D_{b}} \tag{17}
\end{equation*}
$$

(b stands for broken)
We calculate N_{b} and D_{b} by using Eqs. (4) and (5). We obtain

$$
\begin{equation*}
N_{b}=a b[\gamma+(1-\gamma)(c+d-c d)]+c d[\gamma+(1-\gamma)(a+b-a b)]+(\lambda-2) a b c d \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{b}=[\gamma+(1-\gamma)(a+b-a b)][\gamma+(1-\gamma)(c+d-c d)]+(\lambda-1) a b c d \tag{19}
\end{equation*}
$$

COLLAPSED GRAPH: we take $e=1$, hence the graph becomes a series array of two branches (between terminals), the "upper" one is a parallel array of the bonds a and c, the "lower" one is a parallel array of the bonds b and d. It follows

$$
\begin{equation*}
t_{c}=\frac{N_{c}}{D_{c}} \tag{20}
\end{equation*}
$$

(c stands for collapsed)
We calculate N_{c} and D_{c} by using Eqs. (4) and (5). We obtain

$$
\begin{equation*}
N_{c}=[a+c+(\lambda-2) a c][b+d+(\lambda-2) b d] \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{c}=\gamma[1+(\lambda-1) a c][1+(\lambda-1) b d]+(1-\gamma)\left(R_{1}-R_{2}\right) \tag{22}
\end{equation*}
$$

with

$$
\begin{equation*}
R_{1} \equiv[a+c+(\lambda-2) a c][1+(\lambda-1) b d]+[b+d+(\lambda-2) b d][1+(\lambda-1) a c] \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{2} \equiv[a+c+(\lambda-2) a c][b+d+(\lambda-2) b d] \tag{24}
\end{equation*}
$$

Since both N_{W} and D_{W} are multilinear functions of the variables a, b, c, d, e, we have that

$$
\begin{equation*}
N_{W}=N_{b}+e\left(N_{c}-N_{b}\right) \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{W}=D_{b}+e\left(D_{c}-D_{b}\right) \tag{26}
\end{equation*}
$$

If we replace the results $(18,19,21-24)$ into Eqs. $(25,26)$ and these into Eq. (16), we have solved, for arbitrary ($a, b, c, d, e, \gamma, \lambda$), the Wheatstone bridge, which is a nontrivial graph, since it is NOT reducible to only series/parallel operations. This was done by performing simple topological operations on the graph!

4 CONCLUSIONS

We summarize here our main conclusions, namely
(i)Eqs. (4), (5) and (6) implement a new fuzzy transformation which contains both the Hamacher and the Sugeno ones as particular cases.
(ii)Eqs. (4), (6), (16) and $(25,26)$ basically enable the calculation, through topological operations, of ANY two-terminal graph with arbitrary membership degrees.

I deeply acknowledge S . Sandri who generously shared with me her expertise in Fuzzy Logic. I am also grateful to C.R. Neto for very useful remarks. Finally, partial support by PRONEX/FINEP and CNPq (Brazilian Agencies) is acknowledged as well.

References

[1] D.Dubois and H. Prade, Possibility Theory: An Approach to Computerized Processing of Uncertainty (Plenum Press, 1988).
[2] G. Klir and T.A. Folger, Fuzzy Sets and Information (Prentice Hall, Inc., New Jersey, 1988).
[3] C.-T. Lin and C.S. George Lee, Neural Fuzzy Systems: A Neuro-fuzzy Synergism to Intelligent Systems (Prentice Hall, Inc., New Jersey, 1996).
[4] H. Hamacher, Ueber logische Verknupfungen Unscharfer Aussagen und deren Zugehoerige Bewertungs-funktionen, in Progress in Cybernetics and Systems Research, vol. 3, R. Trappl, G.J. Klir and L. Ricciardi, eds. (Hemisphere, Washington, D.C., 1978), pp 276-288.
[5] C. Tsallis and S.V.F. Levy, Physical Review Letters 47, 950-953 (1981) ; C. Tsallis and A.C.N. de Magalhaes, Physics Reports 268, 305-430 (1996).

[^0]: ${ }^{1}$ A function $f\left(x_{1}, \ldots, x_{n}\right)$ is said to be a bilinear ratio when $f\left(x_{1}, \ldots, x_{n}\right)=\frac{g\left(x_{1}, \ldots, x_{n}\right)}{h\left(x_{1}, \ldots, x_{n}\right)}$ such that g and h are linear in relation to each x_{i}.

