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Abstract

We discuss the O(N) vector model and the U(N) Gross-Neveu model with �xed total

fermion number, for large-N in three dimensions. Using non-trivial polylogarithmic iden-
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on the possible implications of our results.
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Conformal �eld theories (CFTs) in dimensions d > 2 have recently attracted much interest

[1]. Generic results based solely on conformal invariance are not very restrictive in d > 2,

(see however [2, 3, 4]), and most of the information is extracted by studying explicit models.

Although many CFTs have been recently discovered in d = 4 [5], a large amount of work has

also been devoted to the study of CFT models in 2 < d < 4, such as the O(N) vector model

[6, 7, 8] and the Gross-Neveu model [9] at their conformal points for large-N .

In this letter, we discuss the free-energy density of the O(N) vector model and the U(N)

Gross-Neveu model with �xed total fermion number, to leading order in the 1=N expansion in

d = 3. Using non-trivial polylogarithmic identities, we calculate the free-energy density of these

models, at their conformal points in a \slab" geometry with one �nite dimension of length L.

The free-energy density of the three-dimensional O(N) vector model in a \slab" geometry was

�rst calculated in [10, 11]. Recently, polylogarithms have also appeared in calculations of the

free-energy density of (super)conformal �eld theories in d = 4 [12].

We begin by reviewing the results of [11]. Consider the partition function of the O(N) vector

model in d = 3, obtained after integrating out the fundamental scalar �elds ��(x), � = 1; 2; ::; N ,

ZB =
Z
(D�) exp [�N Seff(�; g)] ; (1)

Seff (�; g) =
1

2
Tr[ln(�@2 + �)]� 1

2g

Z
d3x�(x) ; (2)

where �(x) is the auxiliary scalar �eld and g the coupling. Setting �(x) =M2 + (i=
p
N)�1(x),

(1) can be calculated in a renormalisable 1=N expansion [13], provided the gap equation

1

g
=
Z d3p

(2�)3
1

p2 +M2
; (3)

is satis�ed. A non-trivial CFT, to any �xed order in 1=N , is obtained by tuning the coupling to

the critical value 1=g � 1=g� = (2�)�3
R
d3p=p2 [13]. Then, the renormalised mass (or inverse

correlation length) M(= 1=�) = 0.

When the model is placed in a \slab" geometry with one �nite dimension of length L and

periodic boundary conditions, the gap equation reads

1

g
=

1

L

1X
n=�1

Z d2p

(2�)2
1

p2 + !2n +M2
L

; (4)
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with the momentum along the �nite dimension taking the values !n = 2�n=L, n = 0;�1;�2; ::.
We may then study the existence of a �nite-temperature phase transition in the dimensionally

continued version of the model, (i.e. in d � 1 in�nite dimensions) [13, 14, 15]. Since UV

renormalisation is insensitive to �nite geometry, the coupling constant on the l.h.s. of (4) can

be put to its renormalised value in the bulk, which explicitly depends on the mass M0 of the

fundamental scalar �elds ��(x). This means that the system is in its O(N)-ordered phase for

zero \temperature" T � 1=L. Then, we can obtain an equation which gives the dependence of

ML on M0 and T . The �nite temperature phase transition, corresponding to O(N) symmetry

restoration, occurs when ML = 0 for some critical temperature T�, which in turn is related to

M0 through the above equation. It can be shown that the �nite-temperature phase transition

cannot take place for 2 < d � 3 in accordance to the Mermin-Wagner-Coleman theorem, but

can only occur for 3 < d < 4. The critical temperature T� obtained this way agrees [16] with

the well-known results, see for example [17]. The theory at T� is a d � 1-dimensional CFT,

however the OPE structure of its correlation functions is less understood [16].

On the other hand, when the coupling is �xed to its bulk critical value 1=g�, (4) has the

solution

ML �M� =
2

L
ln

 
1 +

p
5

2

!
; (5)

which corresponds to the physical situation of �nite-size scaling [18] of the correlation length.

Then, the subtracted 1 free-energy density for this con�guration reads

f1 � fL
N

=
1

2

Z d3p

(2�)3
ln p2 � 1

2L

1X
n=�1

Z d2p

(2�)2
ln(p2 + !2n +M2

� ) +
1

2

Z d3p

(2�)3
M2

�

p2

=
M3

�

12�
� 1

2�L3

h
ln(e�LM�)Li2(e

�LM�)� Li3(e
�LM�)

i

=
4

5

�(3)

2�L3
; (6)

where Lin(x) are the usual polylogarithms [19]. The third line in (6) follows from the second,

by virtue of non-trivial polylogarithmic identities [19] and �ts into the general formula [20]

f1 � fL = ~c
2�(d)

SdLd
; (7)

1Since the UV singularities are the same in the bulk and in the �nite geometry, subtraction of the bulk
free-energy density ensures a UV-�nite result.
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for the �nite-size scaling of the free-energy density in conformal �eld theories, with ~c=N = 4=5.

It is quite remarkable that a rational number appears as the outcome of the calculations in

(6). This is reminiscent of free-energy calculations in two-dimensional CFTs, (see [22] for a

recent reference). There is strong evidence [21] that correlation functions at the above �nite-

size critical point can by described by operator product expansions (OPEs) of the bulk O(N)

vector model, in accordance with earlier ideas [20]. Note that for free bosons in d = 3, ~c=N = 1.

Following the considerations above, it is possible to study the free-energy density of other

CFT models. Consider, for example, the U(N) invariant Gross-Neveu model in d = 3 whose

partition function, after integrating out the fundamental Dirac fermionic �elds  �(x), � �(x),

� = 1; 2; ::; N , reads

ZF =
Z
(D�) exp [�N Ieff(�;G)] ; (8)

Ieff(�;G) =
1

2G

Z
d3x�2(x)� Tr[ln(=@ + �)] ; (9)

where �(x) is the auxiliary scalar �eld and G is the coupling. We use the notation =@ = �@�

and the following two-dimensional Hermitian representation for the Euclidean gamma matrices

in d = 3 [23, 24]

1 = �1 ; 2 = �2 ; 3 � 0 = �3 ; (10)

where �i, i = 1; 2; 3 are the usual Pauli matrices. This model describes fermion mass generation

through the breaking of space parity [24]. The partition function (8) can be evaluated in a

renormalisable 1=N expansion [23] when one sets �(x) = m + (1=
p
N)�1(x), provided the

following gap equation is satis�ed

1

G
= 2

Z d3p

(2�)3
1

p2 +m2
: (11)

At the critical coupling 1=G = 1=G� = 2(2�)�d
R
ddp=p2 the theory is conformally invariant and

m = 0.

When the system is placed in a \slab" geometry with one �nite dimension of length L, the

fermions acquire antiperiodic boundary conditions and the gap equation reads

1

G
=

2

L

1X
n=�1

Z d2p

(2�)2
1

p2 + !2n +m2
L

; (12)
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with !n = (2n + 1)�=L, n = 0;�1;�2; ::. Again, we may study the �nite-temperature phase

transition in the dimensionally continued version of the model, (i.e. in d�1 in�nite dimensions)

[23, 14], by putting 1=G to its bulk renormalised value which explicitly depends on the mass

m0 of the fundamental fermionic �elds. This means that the system is in its \broken phase"

for zero \temperature" T � 1=L. Then, we can obtain an equation which gives the dependence

of mL on m0 and T . The second order �nite-temperature phase transition, corresponding to

space parity restoration, occurs when mL = 0 for some critical temperature T�, which is in turn

related to the bulk fermion mass m0. The �nite-temperature phase transition is now possible

for all 2 < d < 4 [23, 14], due to the existence of zero modes for fermions and antiperiodic

boundary conditions.

On the other hand, when the coupling stays at its bulk critical value 1=G�, (12) is satis�ed

for

mL � m� = 0: (13)

This essentially means that, to leading-N , the free-energy density of the system is given by the

free-�eld theory result 2. Indeed we easily �nd

f1 � fL
N

=
3

4

�(3)

2� L3
; (14)

which implies ~c=N = 3=4, in agreement with the results in [25].

The Gross-Neveu model can also be studied [26, 27] for �xed total fermion number B. To

this e�ect, we introduce a delta-function constraint �(N̂ � B) into the functional integral (8)

at �nite temperature, where

N̂ =
Z
d2x y(x) (x) ; x = (x1; x2) (15)

is the fermion number operator. Using an auxiliary scalar �eld �(x3), the above delta-function

constraint is exponentiated and after integrating out the fermions we obtain the partition

function

Zf =
Z
(D�)(D�) exp

h
�N Ieff (�;G; �; ~B)

i
; (16)

Ieff (�;G; �; ~B) = i ~B
Z
L
�(x3) dx3 +

1

2G
Z
L
d3x�2(x)� Tr[ln(=@ + i3� + �)]L ; (17)

2There exist solutions of (12) with imaginary mL, which will be discussed elsewhere.
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where ~B = B=N is assumed to be �nite for large-N and the subscript L denotes x3-integration

up to L, the latter plays here the rôle of inverse temperature 1=T .

For large-N , the functional integral (16) can be calculated by the steepest descent method,

since it is dominated by the uniform stationary points h�i and h�i of Ieff . These stationary

points are obtained as the solutions of the following set of saddle-point equations

1

G =
2

L

1X
n=�1

Z d2p

(2�)2
1

p2 + (!n + h�i)2 + h�i2 ; (18)

i~b = lim
�!0

2

L

Z 1X
n=�1

d2p

(2�)2
ei!n� (!n + h�i)

p2 + (!n + h�i)2 + h�i2 ; (19)

where ~b = ( ~BL=
), with 
 the total volume. The regulating term ei!n� on the r.h.s of (19) has

been discussed in [27] and ensures a �nite result in the limit � ! 0, after the Matsubara sum

has been performed. For h�i purely imaginary, which corresponds to having a real chemical

potential � = �ih�i [26, 27], (18) coincides with a similar saddle-point equation obtained in

[14, 23]. One can then renormalise (18) by substituting for 1=G the bulk renormalised coupling

1=G, i.e. from (11), since the presence of h�i does not alter its UV behavior. In this way, one

studies the �nite-temperature phase transition of the model, in terms of the renormalised mass

of the bulk fermionic �elds and the chemical potential. For example, (19) would now give the

critical fermion number ~Bcr at which space parity is restored.

Here however, we are interested in possible real values of h�i which satisfy (18) and (19). The

reason is that, if h�i is a real number, we can put in (18) the coupling 1=G to its bulk critical

value 1=G� and obtain the following equation for h�i

L h�i + ln
�
1 + e�Lh�i�iLh�i

�
+ ln

�
1 + e�Lh�i+iLh�i

�
= 0 : (20)

This has a real solution for h�i in terms of the \temperature" T � 1=L and h�i, whenever we
have �1 � cos (Lh�i) � �1=2, or simply � � Lh�i � 2�=3. Note now that h�i, which is the

renormalised inverse correlation length, is non-zero for Lh�i 6= 2�=3, which corresponds to a

�nite-size scaling regime for our fermionic model. The dimensionless quantity Lh�i is plotted
in Fig. 1 for the allowed values of h�i.

The second saddle-point equation (19) ensures a �xed mean fermion number hN̂ i = B, as

imposed by the constraint. It turns out that its r.h.s. is real and has a quadratic divergence

which should be subtracted. Again, if h�i is purely imaginary (19) assumes its usual form [28]
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Figure 1: Lh�i for the allowed region of �.

as the expression for the conserved charge in a system exchanging particles with a reservoir.

It also vanishes for � � �ih�i = 0, as it should, since this would correspond to having no

conserved charges.

On the other hand, for real h�i we obtain, after subtraction of the divergence, a purely

imaginary ~b for the allowed values of h�i and h�i, namely

~b =
i

2�L2
[Cl2(2�) �Cl2(2� � 2Lh�i) � Cl2(2Lh�i)] ; (21)

� = arctan

"
e�Lh�i sin (Lh�i)

1 + e�Lh�i cos (Lh�i)
#
; (22)

where Cl2(!) = Im
h
Li2(ei!)

i
is Clausen's function [19]. Now, ~b is related to the total fermion

number of the system and, in principle, should be real and positive. Therefore, the only allowed

real value for h�i which satis�es both saddle-point equations (18) and (19) is h�i = �=L, for

which the r.h.s. of (21) vanishes. In this case, since ~b = 0, it seems that there are no fermions

left in the system. This is consistent with the apparent bosonisation of the theory for h�i = �=L,

which will be discussed shortly. It is also conceivable that the imaginary solutions for ~b may also

have physical meaning, as they give rise to a real value for the free-energy density of the theory.

The latter result is rather surprising and is obtained by virtue of non-trivial polylogarithmic

identities.

In order to demonstrate the above points, we calculate the free-energy density of the model

and we obtain

f1 � fL
N

=
1

L

1X
n=�1

Z d2p

(2�)2
ln(p2 + (!n + h�i)2 + h�i2) �

Z d3p

(2�)3
ln p2 � h�i2

2G�

=
Z d3p

(2�)3

"
ln

 
p2 + h�i2

p2

!
� h�i2

p2

#
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+
1

L

Z d2p

(2�)2

�
ln
�
1 + e�L

p
p2+h�i2�iLh�i

�
+ ln

�
1 + e�L

p
p2+h�i2+iLh�i

��

+i
h�i
Z d2p

(2�)2

(
1

1 + eL
p
p2+h�i2�iLh�i

� 1

1 + eL
p
p2+h�i2+iLh�i

)

= �h�i
3

6�
+

1

�L3

h
ln
�
e�Lh�i

�
Li2

�
�e�Lh�i; Lh�i

�
� Li3

�
�e�Lh�i; Lh�i

�i

+
Lh�i
2�L3

[Cl2(2�)� Cl2(2�� 2Lh�i) � Cl2(2Lh�i)] : (23)

Lin(r; �) is the real part of the polylogarithm Lin
�
rei�

�
in Lewin's notation [19]. As mentioned

before, the free-energy density (23) is real for all values of h�i and h�i obtained from (20) and

only for them.

For h�i = �=L, (20) becomes simply equation (5) and has the solution h�i =ML (the "golden

mean"), which corresponds to the physical situation of �nite-size scaling of the correlation

length in the O(N) vector model in d = 3. This apparent \bosonisation" of the Gross-Neveu

model happens because the solution h�i = �=L induces a transmutation between Fermi and

Bose statistics by removing the fermion zero mode. Also, for this particular value of h�i we
have seen that ~b is zero. This can be further interpreted as the nonexistence of conserved

charges in the bosonized version of the system, in a much similar way as discussed earlier. The

bosonisation of the model for h�i = �=L is also discussed in [27, 29] and a possible connection

with anyonic physics is made in [30]. In this case, by the same polylogarithmic identities used

in (6) we obtain

f1 � fL
N

= �8

5

�(3)

2� L3
; (24)

which is consistent with the expected CFT result (7) with ~c=N = �8=5. In fact, (23) is con-

sistent with the scaling form of (7) for all the allowed values of h�i and h�i, however the corre-
sponding expressions for ~c=N involve polylogarithms and Clausen's functions at non-exceptional

arguments and are not illuminating. In. Fig. 2 we plot ~c=N for the allowed values of h�i.
Nevertheless, for the other end-point of the allowed h�i region, h�i = 2�=3L, (20) has the

solution h�i = 0, which corresponds to in�nite correlation length. Remarkably, (23) simpli�es

considerably for h�i = 2�=3L giving

f1 � fL
N

= � 1

2�L3

�
Cl2

�
�

3

�
� 2

3
�(3)

�
: (25)
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Figure 2: ~c=N for the allowed region of �.

It may be interesting to point out that Cl2(�=3) is the absolute maximum of Clausen's function

[19].

Consistency of our main result (23) with the scaling form (7) expected from conformal in-

variance raises the possibility that, for � � Lh�i � 2�=3 the Gross-Neveu model with �xed

total fermion number is related to some conformal �eld theory. This is most clearly seen for

h�i = �=L, when from (24) one concludes that the model is related to the O(N) vector model at

its �nite-size scaling critical point. Note that the free-energy density given by (24) is negative.

This shows that such a critical point for the Gross-Neveu model may be unstable by itself.

However, it may be a viable critical point in the context of supersymmetric CFTs in d = 3. To

this end, we note that in the N = 1 supersymmetric �-model in d = 3 [31], the supermultiplet

contains Majorana fermions so that the large-N fermionic contribution to the free-energy of

the system with �xed total fermion number, is half the r.h.s. of (23). Therefore, from (6) and

Fig. 2, we see that the sum of the bosonic and fermionic contributions is always greater that

zero and vanishes for h�i = �=L.

The relevance of non-trivial polylogarithmic identities to the calculation of free-energy densi-

ties in two-dimensional CFTs is well-known (see [22] for a recent reference). Their appearance

in studies of CFTs in higher dimensions requires further investigation. It would be interesting

to study the OPE structure of correlation functions in the Gross-Neveu model at the above

critical points for �xed total fermion number. Although our results simplify for d = 3, they can

presumably be generalised for all 2 < d < 4.
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