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An important progress in physics of turbulence was the (formal) solubility of the

turbulent motions equations by means of functional integrals called now Wild-Rosen path

integrals ([1]).

In this report we propose to deduce the Feynman path integral expression in non

relativistic quantum mechanics by considering the Heisenberg indetermination principle

as a kind of turbulent relation among the generalized momenta and the usual Newtonian

velocities.

Let us start our analysis by considering a classical particle of massM moving under the

presence of a potential V (~x) in RD with a trajectory ~x(t). Its classical action S(~x; (t); t) =

W (~x(t))�Et, with E denoting the particle energy is such that it satis�es the Hamilton-

Jacobi equation on the trajectory

1

2M
j~rW j2(~x(t)) + V (~x(t)) = E (1)

The generalized momenta associated to the contact transformation generated by S(~x; t)

is given by

~� = ~rW (~x(t)) (2)

At this point we propose to de�ne that the ensemble of quantum trajectories ~x(t) is de�ned

by a kind of a quantum stochastic equation for the Newtonian velocity (our \Heisenberg"

like indetermination quantum principal

d~x(t)

dt
�
~�(t)

M
= ~�(t) (3)

where ~�(t) is an intrinsic white noise Gaussian process (a kind of universal quantum

non-relativistic \aether" vaccum) living in the quantum mechanical world whose strength

depends on the interaction with the particle by means of the only classical parameter

which must be preserved in its integrity after quantization: the classical inertial particle

mass

h�i(t)nj(t
0)i =

~

M
�(t� t0)�ij: (4)

Here ~ is the Planck constant and M the Newtonian particle mass. It is worth to remark

that the classical mechanics may be obtained alternatively in our approach by considering
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the vacuum turn o� large mass M ! 1 in relation to the energy quantum mechanical

process instead of the usual W.K.B. limit of ~! 0.

Let us show that our proposed quantum motion equation (3) leads to the Feynman

Quantum Mechanics and consequently to the usual Schr�odinger Wave mechanics.

Let us, thus, consider the (formal) realization of the quantum mechanical noise above

considered by the following Gaussian functional integral generating functional

Z[ ~J(t)] =
1

Z(0)

Z
DF [~�(�)]exp

8<
: i

~
M
Z t

0
d�

1

2

 
d~�(�)

d�

!2
9=
; exp

�
i

~

Z t

0
d� ~J(�)��(�)

�
(5)

At this point it is worth to remark that eq. (5) is not the usual mathematical well

de�ned white-noise probabilistic path integral since the objects inside in eq. (5) are not

measures on the distributional spaces sampling the stochastic process realization of eq.

(4) in space of distributions (Minlos theorem - [4]) that is the reason that we call eq.

(4)-eq. (5) by the name of quantum mechanical noise!. Anyway, the two-point correlation

function associated to the Feynman Path Integral eq. (5) still to be given by eq. (4).

Now we re-write eq. (5) in terms of the ~x(t) quantum trajectories space. It is a simple

functional variable change to see that ([4])

Z[ ~K(t)] =
1

Z(0)

Z
DF [(~x(�)]:det

2
4�[~�(�) = d~x(�)

d�
�

~rW (~x(�))
M

]

�~x(�)

3
5

exp

8><
>:
iM

2~

Z t

0
d�

2
4d~x(�)

d�
�

~rW (~x(�))

M

3
5
2
9>=
>; exp

�
i
Z t

0
d�~k(�):~x(�)

�
(6)

Where we have used eq. (1), eq. (2) and eq. (3). It is, thus, straightforward to get

the following result for eq. (6).

Z[~k(t)] =
1

Z(0)

Z
DF [~x(�)]exp

8<
: i

~

Z t

0
d�

 
1

2
M

d~x(�)

d�

!2
9=
;

exp
�
�
i

~

Z t

0
d�V (~x(�))

�
exp

�
i

~

Z t

0

~k(�) � ~x(�)
�

Note that the functional determinant arising from the variable change eq. (3) is unity

(see refs. [1]).

It is worth considering the associated \intercept point probability distribution" ([4] -
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pag. 53)

Z
d~k2

Z
d~k1e

�i~k1 �~x1 � e+i
~k2�~x2Z[ ~K(�) = [~k1 � �(� � t1) + ~k2�(� � t2)]

def
= P [(x1; t1); (x2; t2)]

(7)

in order to see that eq. (8) is the celebrated the quantum mechanical transitions ampli-

tudes in the Feynman operational framework for Quantum mechanics

P [(~x1; t1); (~x2; t2)] =
Z
~x(t1)=~x1;~x(t2)=~x2

DF [~x(�)]e
i

~

R
t

0
d�( 12M

d~x(�)
d� )

2

� e�
i

~

R
t

0
d�V (~x(�)) (8)

It is important remark that all above exposed formal Feynman path integrals proce-

dures can be mathematicallywell de�ned if one considers �rstly the \Euclidean" Hamilton-

Jacobi equation

1

2M
j~rW j2(~xE(t))� V (~xE(t)) = E (9)

instead of eq. (1) and by secondly, the mathematically well de�ned functional integral

over the Schwartz space topological dual of C1

0 ([0; T ] ([4]).

Z[ ~JE(t)] =
1

Z(0)

Z
DF [~�E(�)]exp

8<
:�M

2~

Z t

0
d�

 
d~�E(�)

d�

!2
9=
; exp

�
i

~

Z t

0
d� ~JE(�)��E(�)

�
(10)

One could proceed exactly as in eqs. (6)-eq. (9) to arrive to the Wick-rotated (difusion)

propagator

Peuclidean[(x1; t1); (x2; t2)] =
Z
~x(t1) = ~x1;~x(t) = ~x2

d�Wiener [~x(�)]exp
�
�
1

~

Z t

0
V (~x(�))

�
(11)

where the Wiener measure d�Wiener [~x(�)] is rigorously de�ned in ref. [4].

These are our proposed results, their generalizations to Quantum �eld path integrals

are straightforward as we show next.

Let us exemplify the theory above proposed in a ��4 scalar (two-dimensional) massless

bosonic quantum �eld in a box �L � x � L with Dirichlet conditions ([4]).

The in�nite variable analogous of the Hamilton-Jacobi equation, after considering the
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Fourier expansion �(x; t) =
+1X

n=�1

cn(t)e
2�inx
L , reads

+1X
n=�1

�����@W@Cn

(C0(t); C1(t); � � � ; Cn; � � � )

�����
2

+

 
1X

n=�1

�
2�n

L

�2

C2
n

!
+ �

+1X
n1=�1

+1X
n2=�1

+1X
n3=�1

+1X
n4=�1

Cn1(t)Cn2(t)Cn3(t)Cn4(t) �(n1 + n2 + n3 + n4) = E (12)

The proposed �rst order in time and (in�nite variable) evolution equation for each

normal mode quantum �eld oscilator is given by

d

dt
Cn(t)�

 
@

@Cn

�W

!
[C0(t); � � � ; Cn(t); � � � ] = �n(t) (13)

where the normal mode \aether" quantum �eld oscilator is the white noise process�
�(x; t) =

P+1
n=�1 �n(t)e

2�inx
L

�

h�n(t)�m(t
0)i = �nm�(t� t0) (14)

By following the same analysis exposed in the paper, we arrive at the well-known

Feynman path integral representation for the quantum �eld theory under study in the

space-time �eld representation:

Z[J(x; t)] =
1

Z(0)

Z
DF ['(x; t)] exp

8<
: i

~

Z +1

�1

dt
Z +1

�1

0
@
 
@'

@t

!2

�

 
@'

@x

!2

+ �'4

1
A (x; t)

9=
;

exp
�
i

~

Z +1

�1

dtdx J(x; t)'(x; t)
�

(15)

Let us �nally stress that new numerical procedures originated from eq. (3) and eq.

(4) for quantum path integrals perhaps would be easier to implement than the usual Fast

Fourier Transforms for the Feynman path integral eq. (9) or Monte Carlo sampling for

the Euclidean path integral eq. (12). Numerical studies are in progress and will appear

elsewhere (see the Appendix A for a outline of these computer-oriented proposals).
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Appendix A

New Numerical Procedures and Paraxial Wave Propagation

In this appendix, we would like to point out that eq. (3) gives a simple stochastic-

numerical procedure to evaluate the Feynman quantum mechanical propagator eq. (6).

In order to display this approximate procedure, let us rewrite eq. (6) as the vertex average

de�ned by eq. (3), namely:

G[(~x1; t1); (~x2; t2)] =
Z
d~k1 d~k2 e

�i~k�~x1ei
~k2�~x2

D
ei
~k1�~x(t1)e�i

~k2�~x(t2)
E
~x

(A.1)

Here the quantum (turbulent) trajectory average h i~x is de�ned by the (non-linear)

stochastic eq. (3) with the boundary conditions ~x(t1) = x1 and ~x(t2) = x2.

If one discretizes the propagation time interval steps of a �xed length, t1 � t2=N = ",

one can solve numerically eq. (3) which takes the following discetrized form

(~x`+1 � ~x`)="+ (~r �W )(~x`) = ~�("`)
def
=
a
~�("`) (A.2)

with 1 � ` � N

and, thus, one is able to estimate eq. (A.1) by means of the vertex

G[(~x1; t1); (~x2; t)] �
Z
d~k1 d~k2 � e

�i~k1�~x1 � ei
~k2�~x2

D
e+i

~k1�~x1 � e�i
~k2�~xN

E
�

(A.3)

Here ~x2 = ~xN = f(x1; �(0); �(1); � � � ; �(N)) is obtained directly from the recurrence

relationship eq. (A.2) and h i is the white-noise Gaussian (latticed) average:

h�(�)i� =

R+1
�1

� � �
R+1
�1

(d�(N))e+
i

�
(�(0))2 � � � e+

i

�
(�(N))2�(�)R+1

�1
(d�(0)) � � �

R+1
�1

(d�(N))e+
i

�
(�(0))2 � � � e+

i

�
(�(N))2

(A.4)

Finally, we would like to display a application of the results of this note on quantum

physics to a classical problem of determinate the electromagnetic strength E[(x; y); z; t]

originating from a monochromatic point source and propagating in a medium character-

ized by a deterministic refractive index �(x; y; z) in the half-space R3
+ = f(x; y; z); 0 �

z <1, (x; y) 2 R2g.
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In the famous Paraxial approximation, this pulse is supposed to have explicitly the

following structural form

E[(x; y); z; t] = RealfA[(x; y); z]ei(kz�wt)g (A.5)

where the Paraxial amplitude satis�es the following two dimensional Schr�odinger initial

value equation with the depth coordinate playing the role of the time variable

 
i
@

@z
+

1

2k
�(x;y) � k(1� �(x; y; z))

!
A[(x; y); z] = 0 (A.6)

Here the initial date condition is supposed to be known, namelly:

A[(x; y); z! 0+] = A(N)(x; y) (A.7)

Now it is straightforward to apply the results of this note to the problem of time-

dependent bounded potentials V (~x; t) (V (~x; t) 2 C1

c (R4)) by considering instead of eq.

(1) in the text, the following time-dependent Hamilton-Jacobi Equation

j(~rW )(~x; t)j2 + 2 �
@W

@t
(~x; t) = E � V (x; t) (A.8)

with E = maxjU(~x; t)j <1.

At this point, we remark that the numerical analogous of eq. (B.2) is explicitly given

by

(~x`+1 � ~x`)="+ (~r �W )(~x`; "`) = �("`) (A.9)

Finally, we remark that the same numerical-stochastic procedure works within in the

context of the di�usion equation propagator eq. (12), even in the case of randomnes of

the potential V (~x) (see refs. [1]), a potential advantage in comparison to other stochastic

methods.


