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Abstract

Three dimensional Yang-Mills gauge theories in the presence of the Chern-

Simons action are seen as being generated by the pure topological Chern-Simons

term through nonlinear covariant rede�nitions of the gauge �eld.
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1 Introduction

In a previous letter [1] it has been observed that the topological three dimensional massive

Yang-Mills gauge theory whose expression is given by the sum of the Yang-Mills action

and of the Chern-Simons term [2]

SYM (A) + SCS(A) ; (1.1)

with

SY M(A) =
1

4m
tr
Z
d3xF��F

�� ; (1.2)

and

SCS(A) =
1

2
tr
Z
d3x"���

�
A�@�A� +

2

3
gA�A�A�

�
; (1.3)

can be cast in the form of a pure Chern-Simons action through a nonlinear rede�nition

of the gauge connection, namely

SYM (A) + SCS(A) = SCS( bA) ; (1.4)

with

bA� = A� +
1X
n=1

1

mn
#n�(D;F ) : (1.5)

The coe�cients #n�(D;F ) in eq.(1.5) turn out to be local and covariant, meaning that

they are built only with the �eld strength1 F��

F�� = @�A� � @�A� + g[A�; A�] ; (1.6)

and the covariant derivative D�

1As usual the gauge �eld A� is meant to be Lie algebra valued, A� = Aa
�T

a, T a being the antihermitian

generators of a semisimple Lie group.
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D� = @� + g [A�; ] : (1.7)

The two parameters g;m in the above expressions identify the gauge coupling constant

and the so called topological mass [2]. According to the parametrization chosen for the

topological massive Yang-Mills action (1.1) we can assign mass dimension 1 to the gauge

�eld A�, so that the parameters g;m are respectively of mass dimension 0 and 1.

For instance, for the �rst four coe�cients of the expansion (1.5) we have [1]

#1� =
1

4
"���F

�� ; (1.8)

#2� =
1

8
D�F�� ;

#3� = �
1

16
"���D

�D�F
�� +

g

48
"���

h
F ��; F �

�

i
;

#4� = �
5

128
D2D�F�� +

5

128
D�D�D

�F��

�
7

192
g
h
D�F�� ; F

�
�

i
�

1

48
g
h
D�F��; F

��
i
:

This work attempts to provide a detailed and self-contained cohomological analysis

of the equation (1.4) and of the covariant character of the coe�cients #n�(D;F ). Fur-

thermore, the formulas (1.4) ; (1.5) will be generalized to any local2 gauge invariant Yang-

Mills type action3:
R
FD2F; etc:. These features will enable us to interpret the topological

Chern-Simons term as a gauge invariant functional acting on a suitably de�ned space of

gauge connections. Any given local Yang-Mills type action is thus obtained by evaluat-

2As we shall see in the Sect.5, a rather large class of nonlocal gauge invariant actions can be contem-

plated as well.
3According to the BRST analysis of gauge theories [3, 4, 5], the name Yang-Mills type action is

employed here to denote a generic integrated local invariant polynomial with vanishing ghost number

built only with the �eld strength F and its covariant derivatives. The corresponding actions are of a very

di�erent nature with respect to the Chern-Simons term, which is known to be BRST invariant only up to

a total derivative. It belongs thus to the so called BRST cohomology modulo d, d being the space-time

di�erential. Although the present considerations are referred to the 
at euclidean space-time, it is worth

recalling that while the Chern-Simons term turns out to be metric independent when de�ned on curved

spaces, the Yang-Mills type actions couple in a nontrivial and direct way to the space-time metric [4].
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ing the Chern-Simons functional at a speci�c point of this space, yielding thus a pure

geometrical set up for the three dimensional gauge theories.

The work is organized as follows. In Sect.2 we review the BRST cohomology of three

dimensional gauge theories in the presence of the Chern-Simons action. In Sect.3 we

establish some general geometrical features of the topological Chern-Simons term which

will account for the covariant character of the coe�cients #n� and for the eq.(1.4). Sect.4

deals with the generalization to a generic Yang-Mills type action. Although the content of

this paper refers mainly to geometrical aspects, Sect.5 will be devoted to the consequences

following from the relation (1.4) at the quantum level. Further possible applications will

be also outlined.

2 BRST cohomology of Yang-Mills theory in the pres-

ence of the Chern-Simons term

2.1 Generalities

The BRST cohomology of the Yang-Mills gauge theories has been studied extensively in

the last years. Very general results and theorems have been established in any space-time

dimension [3, 4, 5], being easily adapted to the present case. Following the standard

procedure [6, 7], the BRST di�erential s corresponding to the topological massive Yang-

Mills action (1.1) is given by

sA� = D�c ;

sc = �gc2 ;

sA�� =
1

2
"���F

�� +
1

m
D�F�� � g

n
A��; c

o
;

sc� = D�A�� + g [c�; c] ; (2.9)

with c being the Faddeev-Popov ghost and (A��; c
�) identifying the two anti�elds needed

in order to implement in cohomology [5] the equations of motion stemming from the

action (1.1). The �elds and anti�elds (A�; c; A
�

�; c
�) carry respectively ghost number
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(0; 1;�1;�2).

In order to provide a cohomological understanding of the equation (1.4) we have �rst

to specify the appropriate functional space for the BRST di�erential. As suggested by

the equation (1.5), the latter will be identi�ed with the space of the integrated local poly-

nomials in the �elds and anti�elds of arbitrary dimension. More precisely, the operator s

will be allowed to act on the functional space of the integrated local formal power series in

the �elds and anti�elds. This choice is the most suitable one in view of the generalization

of the eq.(1.4) to higher order Yang-Mills type actions,
R
FD2F ,

R
FD2D2F , etc., which

will be discussed later on. These terms �t naturally in the space of the local formal power

series in the �elds and anti�elds. Observe also that the inverse of the topological mass

can be interpreted as the expansion parameter for the formal power series belonging to

this functional space, as in the case of the coe�cients #n� of the nonlinear �eld rede�nition

(1.5) :

It is rather simple now to convince ourselves that, within the space of the local formal

power series, the presence of the Chern-Simons term in the initial action (1.1) allows us

to implement a recursive procedure which trivializes any BRST invariant term containing

only F and its covariant derivatives. In order to have a direct and simple idea of the

meaning of this statement it is su�cient to consider the so called abelian approximation

of the BRST transformations (2.9), namely

s �! s0 ; (2.10)

with

s0A� = @�c ;

s0c = 0 ;

s0A
�

� =
1

2
"���F

0�� +
1

m
@�F 0

�� ; (2.11)

s0c
� = @�A�� ;

and
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F 0
�� = @�A� � @�A� : (2.12)

From eqs.(2.11) we see that the s0�transformations of the �elds and anti�elds correspond

to the case in which all (anti)commutators have been discarded, reducing thus to a set of

abelian transformations. The operator s0 is actually the �rst term of the decomposition

of the full BRST di�erential s according to the �ltering operator [8, 7]

N = tr
Z
d3x

 
A�

�

�A�

+ c
�

�c
+A��

�

�A��
+ c�

�

�c�

!
: (2.13)

As it is well known, the relevance of the operator s0 is due to a very general theorem

[8, 7] on the BRST cohomology which states that the cohomology of the complete BRST

di�erential s is isomorphic to a subspace of the cohomology of the operator s0. This

implies, in particular, that if the cohomology of s0 is trivial, that of the full operator s

will be empty as well.

Let us now proceed by rewriting the third equation of (2.11) in the following form

F 0
�� = s0("���A

��) �
1

m
"���@�F

0�� ; (2.14)

where use has been made of the euclidean normalization

"���"��� = ����
�
� � ��� �

�
� : (2.15)

From the equation (2.14) we see that we can replace the �eld strength F 0
�� by a pure BRST

variation with in addition a term of higher dimension containing a space-time derivative

and a factor 1=m. The equation (2.14) has the meaning of a recursive formula since F 0
��

appears on both sides, thereby allowing us to express F 0
�� as a pure s0�variation, i.e.

F 0
�� = s0("���A

��) �
1

m
"���@�F

0��

= s0

�
"���A

�� �
1

m
(@�A

�

� � @�A
�

�)
�
+

1

m2
(@�@

�F 0
�� � @�@

�F 0
��)

= s0

�
"���A

�� �
1

m
(@�A

�

� � @�A
�

�) +
1

m2
("���@� � "���@�)@

�A��
�

�
1

m3
("���@� � "���@�)@

�@�F
0��
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= s0

�
"���A

�� �
1

m
(@�A

�

� � @�A
�

�) +
1

m2
("���@� � "���@�)@

�A��

�
1

m3
("���@� � "���@�)"

���@�@�A
�

�

�
+O(

1

m4
)

= ::::::::::::: : (2.16)

It becomes now apparent that this iterative procedure will result in a formal power series

in the expansion parameter 1=m whose coe�cients will contain only the anti�eld A�� and

its space-time derivatives. The above formula expresses the triviality of the �eld strength

F 0
�� . As a consequence, any invariant local term depending only on F 0

�� and its space-

time derivatives can be written as a pure s0�variation. Of course, the same property

holds at the level of the full BRST operator s with the result that all the invariant local

terms made up with the �eld strength F�� and its covariant derivatives can be cast in

the form of an exact BRST variation of a local formal power series. Therefore, from the

general results on the BRST cohomology of gauge theories [3, 4, 5], we can infer that

in the space of the integrated local power series in the �elds and anti�elds the unique

nontrivial element with the quantum numbers of an action can be identi�ed with the

pure topological Chern-Simons term4 (see also Sects.5,6 of ref.[9]).

It is worth recalling that, within the BRST algebraic framework, the terms of the

action which are exact turn out to correspond to pure �eld rede�nitions. Therefore,

the formulas (1.4) ; (1.5) arise as a consequence of the BRST triviality of the Yang-Mills

term. We also underline that the possibility of rewriting the Yang-Mills action in exact

form relies crucially on the presence of the topological Chern-Simons term in the starting

action. As one can easily understand, this is due to the fact that the �eld variation

of Chern-Simons yields the (dual) of the �eld strength F��, as expressed by the BRST

transformation of the anti�eldA�� in eqs.(2.9). Without the presence of the term "���F
�� in

the right hand side of eqs.(2.9) it would be impossible to implement the previous recursive

procedure, as the left hand side of the eq.(2.14) would be vanishing. The formula (2.14)

would become thus useless. This means that if the Chern-Simons term is not included

4We recall here that, from the general theorems proven in [5], the anti�elds do not contribute to the

BRST cohomology in the sector of zero ghost number for Yang-Mills gauge theories with semisimple

group in arbitrary space-time dimension.
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in the initial action, there is no way of (re)expressing the Yang-Mills action in the form

of an exact variation of a local formal power series. However, as soon as the topological

Chern-Simons is turned on, we can immediately reabsorb the Yang-Mills term through a

nonlinear �eld rede�nition.

2.2 Complete ladder structure

The previous cohomological considerations can be understood in a simple way by noticing

that the transformations (2.11) can be cast in a form which is typical of the topological

theories of the Schwartz type [10], as for instance pure Chern-Simons. In fact, using as

new variables the rede�ned anti�elds

eA��� = A��� �
1

m
"���@�A

��� �
1

m2
@2A��� +

1

m3
"���@

2@�A
��� (2.17)

+
1

m4
@2@2A��� +O(1=m5) ;

ec� = c� �
1

m2
@2c� +

1

m4
@2@2c� +O(1=m5) ;

with

A��� = "���A
�� ; (2.18)

one easily gets, up to the order 1=m5,

s0A� = @�c ; (2.19)

s0c = 0 ;

s0 eA��� = F 0
�� ;

s0ec� =
1

2
"���@� eA��� :

This structure, called complete ladder structure [7], implies that all �elds but the undif-

ferentiated ghost c can be grouped in BRST doublets, meaning that the cohomology of s0

in the space of the formal power series is spanned by polynomials in the undi�erentiated

ghost c: As it is well known this result, combined with the requirement of the rigid gauge
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invariance [3, 5], allows to identify the cohomology classes of the full BRST di�erential

with the invariant polynomials in the undi�erentiated Faddeev-Popov ghost c built with

monomials of the kind trc2n+1, n � 1. It follows then that the cohomology of s modulo d

in the sector of the local power series with the same quantum numbers of a Lagrangian

has a unique nontrivial element, corresponding (via descent equations [7]) to the ghost

monomial trc3. The resulting action is the Chern-Simons term.

Having justi�ed the equations (1.4) ; (1.5), let us now turn to the covariant character

of the coe�cients #n� in eqs.(1.5). This will be the task of the next Section.

3 Some useful properties of the pure Chern-Simons

action

In order to account for the covariant character of the coe�cients #n� in the eq.(1.5) we

recall �rst some simple properties of the Chern-Simons term. Let A� be a given gauge

connection and let SCS(A) be the corresponding BRST invariant Chern-Simons action,

as given by the expression (1.3). Let us now vary the gauge �eld A� by an arbitrary

amount �A� and let us try to establish the transformation law for �A� in order that the

new Chern-Simons functional SCS( bA) evaluated at bA� = A� + �A�, i.e.

SCS ( bA) = SCS(A) + tr
Z
d3x"���

�
1

2
�A�F�� +

1

2
�A�D��A� +

g

3
�A��A��A�

�
; (3.20)

is still BRST invariant. Notice also that the variation �A� is not treated as an in�nitesimal

quantity, the formula (3.20) being indeed exact.

Requiring then that

sSCS( bA) = 0 ; (3.21)

and recalling that

sSCS(A) = 0 ; (3.22)
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we easily obtain

0 = tr
Z
d3x"��� ((s�A� � g [�A�; c])F�� + 2g(s�A�)�A��A�

+ ((s�A�)D��A� + �A�s(D��A�)) ) : (3.23)

The condition (3.23) implies that

s�A� = g [�A�; c] ; (3.24)

meaning thus that �A� transforms covariantly. From the eq.(3.24) it follows that the

modi�ed �eld bA� = A� + �A� is a connection,

s bA� = @�c+ g
h bA�; c

i
; (3.25)

as it should be.

We see therefore that if we vary the gauge �eld A� by an arbitrary amount �A� which

transforms covariantly under BRST, the resulting Chern-Simons term SCS (A�+�A�) will

remain gauge invariant. Of course, the covariant character persists also in the case in

which �A� is meant to be a local formal power series in the expansion parameter 1=m,

i.e.

�A� =
1X
n=1

1

mn
#n� : (3.26)

From the eq.(3.24) we have

s#n� = g
h
#n�; c

i
; (3.27)

owing to the fact that coe�cients #n� with di�erent values of n have to be considered

independent, being of di�erent mass dimensions.

Moreover, from the eq.(3.26) we obviously get

SCS(A� + �A�) = SCS(A) +
1X
n=1

1

mn
Sn ; (3.28)
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Sn being integrated local formal power series corresponding to the expansion of SCS(A�+

�A�) in powers of the inverse of the topological mass m, according to eq.(3.26).

Furthermore, from the BRST invariance of SCS(A� + �A�) and of SCS(A), we have

sSn = 0 ; (3.29)

implying that the coe�cients Sn in the eq.(3.28) are BRST invariant. Recalling now that

the Chern-Simons term is the unique nontrivial action in the space of the local formal

power series, it follows that the Sn's in eq.(3.28) have to be necessarely BRST exact,

namely

Sn = scS n
; (3.30)

for some local integrated formal power series cS n
with negative ghost number. We are

now ready to give a cohomological proof of the equation (1.4).

In fact, the following Lemma holds:

Lemma 1 Among the class of the BRST invariant Chern-Simons functionals SCS( bA)
SCS( bA) = 1

2
tr
Z
d3x"���

� bA�@� bA� +
2

3
g bA�

bA�
bA�

�
; (3.31)

bA� being a connection of the type

bA� = A� +
1X
n=1

1

mn
#n� ; (3.32)

it is always possible to �nd a set of covariant5 coe�cients #n� such that

SCS( bA) = SCS(A) +
1

4m
tr
Z
d3xF��F

�� : (3.33)

Proof.

In order to prove the Lemma we proceed by assuming the converse, as it is usual in

this kind of problem. Let us suppose then that the eq.(3.33) does not hold, i.e. that

SCS( bA) 6= SCS(A) +
1

4m
tr
Z
d3xF��F

�� : (3.34)

5We recall that the covariant character of the #n�'s follows from the requirement of gauge invariance

of SCS(Â).
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Therefore, recalling from the eq.(3.30) that

SCS( bA) = SCS(A) + s

 
1X
n=1

1

mn
cS n

!
; (3.35)

we should have
1

4m
tr
Z
d3xF��F

�� 6= s

 
1X
n=1

1

mn
cS n

!
; (3.36)

which, of course, is in contrast with the results of the previous Section which allow us in

fact to express the Yang-Mills action as a pure BRST variation of a local formal power

series, thereby concluding the proof of the Lemma.

The above result provides a simple cohomological understanding of the equations

(1.4) ; (1.5). It can be easily extended to cover the case in which the initial action (1.1) is

supplemented with generalized terms of the Yang-Mills type. We recall in fact that among

the BRST invariant actions built with F�� and its covariant derivatives, the Yang-Mills

Lagrangian trF��F
�� is the term with the lowest mass dimension. Any other term of

this kind will contain a higher number of F�� or D�, increasing thus its mass dimension.

As a consequence, the abelian transformations (2.11) will get modi�ed by terms of higher

order in F 0
�� and its space-time derivatives. Therefore, provided the Chern-Simons term is

included in the starting action, it will be always possible to generalize the formula (2.14),

thereby expressing the �eld strength F 0
�� as a BRST exact variation of a local formal

power series. Everything will work as before, with the only di�erence that the coe�cients

#n� of the nonlinear rede�nition (1.5) have now to be suitably modi�ed. However they will

remain covariant, as it will be illustrated in the following examples.

4 Examples

In order to have a better understanding of the previous results it is useful to work out the

expressions of the coe�cients #n� in the case in which we add to the initial action (1.1)

generalized terms of the Yang-Mills type. We shall study in particular the following terms

S�(A) =
�

2m2
tr
Z
d3x"���F��D�F

�
� ; (4.37)
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and

S�(A) =
�

4m3
tr
Z
d3xF ��D2F�� ; (4.38)

�; � being two dimensionless arbitrary parameters. The terms (4.37) ; (4.38) have been

considered in fact by [11, 12] as higher derivatives regularizing actions for the topological

massive Yang-Mills.

Let us choose then as initial action the expression

SY M(A) + SCS(A) + S�(A) : (4.39)

In this case, for the �rst coe�cients #n� of the expansion (3.32) we get

#1� =
1

4
"���F

�� ;

#2� =
(1� 4�)

8
D�F�� ;

#3� = �
(1� 4�)

16
"���D

�D�F
�� +

g

48
"���

h
F ��; F �

�

i
: (4.40)

Analogously, in the case in which the starting point is

SY M(A) + SCS(A) + S� (A) ; (4.41)

we obtain

#1� =
1

4
"���F

�� ;

#2� =
1

8
D�F�� ;

#3� = �
1

16
"���D

�D�F
�� +

g

48
"���

h
F ��; F �

�

i
+

�

4
"���D

2F �� : (4.42)

Of course, provided the Chern-Simons term is included in the starting action, any other

combination of
R
trF 2;

R
trFD2F;

R
tr"���F��D�F

�
� ; will lead to similar results. Notice,

�nally, that the expression for the coe�cient #1� is independent from the parameters �; � ,

owing to the fact that the two terms S�(A) and S� (A) in eqs.(4.37) ; (4.38) are respectively

of the order 1=m2 and 1=m3.
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5 Conclusion

The results established in the previous sections lead us to organize the concluding remarks

in two separate classes. To the �rst class belong the pure geometrical considerations. In

the second one we discuss the �eld theory aspects. Here we will attempt to make contact

with the known perturbative results on topological massive Yang-Mills [2, 13, 14, 12, 25,

15, 20]. We shall also try to provide a meaningful support to a question which arises

almost naturally and which could be of great interest in order to improve our present

understanding of the e�ective 1PI quantum actions of three dimensional gauge theories.

5.1 The geometrical set up

A very simple and attractive geometrical set up emerges from the considerations of this

work. The Chern-Simons term can be interpreted in fact as a gauge invariant functional

de�ned on the space of all possible gauge connections of the kind (3.32). Any given local

Yang-Mills type action is then reproduced by evaluating the Chern-Simons functional at

a speci�c point of this space, which amounts to a suitable choice of the gauge connection

or, equivalently, of the covariant coe�cients #n�. In this sense the Chern-Simons term may

be considered as a topological generator for three dimensional Yang-Mills gauge theories.

Moreover, this geometrical interpretation gives us a direct perception of how rigid

can be a topological object. Of course, rigidity has here the meaning of the classical

equivalence, up to local nonlinear �eld rede�nitions, among the Yang-Mills type actions

in the presence of Chern-Simons and the pure Chern-Simons term. It is worth noticing

that the aforementioned rigidity of Chern-Simons has been already underlined by [9] in

the framework of the consistent deformations of the master equation.

5.2 Field theory aspects

5.2.1 Perturbative topological massive Yang-Mills and ultraviolet �niteness

In spite of being only power counting superrenormalizable, topological massive Yang-

Mills (1.1) is ultraviolet �nite to all orders of perturbation theory. This property has
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been �rst observed at one loop level [2, 13] and later on has been extended to all orders

by combining two loops computations with �niteness by power counting at higher loops

[14]. The ultraviolet �niteness has been proven in the Landau gauge; this gauge being

always assumed in what follows.

In order to make use of the results established in Sects.3,4, let us �rst analyse the

meaning of the formulas (3.33) ; (3.35) from a �eld theory point of view. In particular, the

eq.(3.35) implies that the Yang-Mills action can be written as a pure BRST variation of

a power series which contains terms of arbitrary dimension, according to the nonlinearity

of the �eld rede�nition (1.5). This could seem to be in disagreement with the standard

power counting, since the BRST di�erential is required to act on the space of local terms

of arbitrary dimension. Nevertheless, we can give a meaning to eq.(3.35) by adopting a

more general point of view and take as the starting action the formal power series

S(A) = SCS(A) +
1

4m
tr
Z
d3xF��F

�� +
1X
j=2

1

mj

0@ dkX
k=1

�j
kS

k
j (A)

1A ; (5.43)

where �j
k are arbitrary coe�cients and Sk

j are all possible higher dimensional Yang-Mills

type actions built with the �eld strength F and the covariant derivative D. The index k

in the double sum (5.43) is needed in order to account for the degeneracy (dk) of di�erent

Yang-Mills actions with the same dimension. Notice also that, according to the results

of Sects.3,4, the action S(A) in eq.(5.43) can be cast in the form of a pure Chern-Simons

term, i.e. S(A) = SCS( bA), with a suitable choice of the gauge connection bA.
For the fully quantized action in the Landau gauge we have therefore

� = S + tr
Z
d3x

�
b@A+ @�cD�c+A��D

�c� gc�c2
�
; (5.44)

where b; c are the lagrangian multiplier and the antighost. The reason for this choice is

that, being now the starting action � a formal power series, the BRST di�erential turns

out to be naturally de�ned on the space of the local formal power series.

It is worth underlining that this point of view closely follows the recent new perspec-

tives on the renormalization of gauge theories outlined in [16]. Owing to the general results

on the cohomology of gauge theories [3, 5], the action (5.44) is indeed renormalizable6 in

6According to the analysis of [16], the model (5:44) can be seen as a renormalizable theory ful�lling
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the sense that all divergences can be cancelled by the in�nite terms of �, which spans all

possible local BRST invariant Yang-Mills terms.

Although the action � justi�es the use of the space of the formal power series for the

BRST di�erential, we have always to face the problem of the in�nite number of parameters

present in the expression (5.43). However, it is easily seen that all the coe�cients (m;�j
k)

correspond to BRST trivial parameters [7]. Indeed, recalling that from the results of the

previous sections every Yang-Mills type term can be written as the BRST variation of a

formal power series, we immediately infer that

@�

@m
= BRST � variation ; (5.45)

@�

@�j
k

= BRST � variation ;

the left hand side of eq.(5.45) being understood as a formal power series. The above

equations mean thus that the dependence of the action S from the parameters m;�j
k can

be controlled through a nonlinear rede�nition of the gauge �eld, as showed in Sects.3,4.

We see therefore that, in spite of the presence of an in�nite number of parameters, the

eq.(5.45) implies that � possesses a unique nontrivial parameter7 g, corresponding indeed

to the Chern-Simons action,

g
@�

@g
= SCS(A) + (BRST � variation) : (5.46)

In addition, due to the topological character of Chern-Simons, it is apparent that an equa-

tion similar to (5.45) holds for the classical BRST invariant symmetric energy momentum

tensor8 T�� computed from S;

the so called structural constraint of the type A.
7This situation looks rather similar to that of other kinds of well known models, as for instance the

two dimensional nonlinear sigma model [17] and the superspace four dimensionalN = 1 super Yang-Mills

[18] which, in spite of the presence of an in�nite number of parameters, turn out to be characterized only

by a �nite set of BRST nontrivial couplings. It should be noticed also that the requirement that only

a �nite number of parameters are BRST nontrivial is a condition stronger than those assumed in [16].

This requirement, combined with the ful�llment of the structural constraints of [16], could give a more

precise meaning to theories which are apparently powercounting nonrenormalizable.
8As it is well known, a symmetric classical BRST invariant energy-momentum tensor T�� can be
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T�� = BRST � variation : (5.47)

Furthermore, making use of the extended BRST technique [19] (see App.A for the details)

and bearing in mind that in three dimensions there are no gauge anomalies, it follows that

the equations (5.45) ; (5.47) are easily extended at the quantum level, namely

@�

@m
= BRST � variation ; (5.48)

@�

@�j
k

= BRST � variation ;h
T �

� � �
i

= BRST � variation + total derivative ;

where, as usual, the terms in the left hand side have to be understood as BRST exact

quantum insertions of formal power series (see App.A) and T �
� stands for the trace of T�� :

This implies, in particular, that the dependence of the quantum theory from the renor-

malization point � can be controlled by the introduction of suitable BRST exact terms.

These terms, being formal power series, correspond to possible nonlinear rede�nitions of

the �elds.

The equations (5.48), implicitly contained in the analysis of ref.[1], represent our

algebraic understanding of the ultraviolet �niteness properties and of the role of the

nonlinear �eld rede�nitions at the quantum level.

Recently, an independent and di�erent proof of the ultraviolet �niteness of topological

massive Yang-Mills including the vanishing of the �eld anomalous dimensions has been

achieved by [20].

5.2.2 An open question: the fully quantum equivalence

Perhaps the most intriguing question which arises naturally in the present context is

whether the classical equivalence between the massive topological Yang-Mills and the

obtained by the standard procedure of coupling the action S to gravity and set the metric to the 
at one

after taking the derivative of S, i.e.

T�� =
1p
�

�S
����

����
�! flat

:

The Chern-Simons term does not contribute to T�� due to the fact that it does not couple to the metric.
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pure Chern-Simons, as stated by eq.(1:4), can be extended at the level of the full 1PI

e�ective action �(A):

Of course, we are unable to give a satisfactory and de�nitive answer to this question.

Only a few terms of �(A) have been computed till now; �(A) being an in�nite series in

the loop parameter expansion �h.

What we shall do here is to show that, in spite of their nonlocal character, a rather

large number of terms contributing to �(A) can be in fact reabsorbed in the Chern-Simons

through nonlocal but covariant nonlinear �eld rede�nitions.

In what follows we shall strictly refer to the 
at euclidean space-time R3 endowed

with the constant 
at metric ��� = diag:(+;+;+):

We begin with a more precise de�nition of the 1PI quantum action. The functional

�(A) is meant to be the 1PI e�ective action computed from topological massive Yang-

Mills upon quantization in the Landau gauge and after setting to zero the classical �elds

corresponding to the lagrangian multiplier, ghosts and anti�elds. Therefore �(A) depends

only on the classical �eldA� de�ned through the Legendre transformation of the generator

Zc(J) of the connected Green's functions, i.e.

�(A) =
1X
n=2

Z
d3x1::::d

3xnA(x1)::::A(xn)�
n(x1;::::;xn) ; (5.49)

where �n(x1;::::;xn) is the n-point9 1PI Green function.

Let us recall here the main basic facts about pure Chern-Simons and topological

massive Yang-Mills at the quantum level which will be useful in the following:

� �(A) is gauge invariant and contains both local and nonlocal contributions at each

order of perturbation theory.

� For a pure Chern-Simons theory the general covariance is unbroken at the quantum

level [21, 22, 23, 24, 28], implying that the dependence on the (
at) space-time

metric is nonphysical. Let us also remind that, although being only powercounting

renormalizable, Chern-Simons is ultraviolet �nite [21, 22, 23, 24].

9We have not speci�ed the group indices in eq.(5:49) since they are not relevant for the forthcoming

considerations.
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� As proven by [14], pure Chern-Simons is recovered as the in�nite mass limitm!1

of topological massive Yang-Mills.

� In spite of the presence of the antisymmetric tensor "���, explicit regularizations

preserving the BRST invariance have been constructed for topological massive Yang-

Mills [14, 12, 25]. Although not needed for an algebraic analysis, the existence

of regularizations preserving the BRST symmetry is rather important in order to

carry out computations. This means that the BRST invariance can be maintained

manifestly at each step, implying that �(A) can be constructed without leaving the

space of the gauge invariant terms.

Let us now focus on the structure of the 1PI e�ective action �(A). Needless to say,

�(A) is expected to be a quite complicated object. Moreover, due to the gauge invariance,

�(A) will certainly contain a large number of terms built with the �eld strength F and

its covariant derivatives, intertwined in very complicated nonlocal but gauge invariant

combinations [13].

However, it is very simple to see that if we start with a gauge invariant nonlocal

action built with F and its covariant derivatives in the presence of Chern-Simons, the

recursive formula (2.14) can be suitably adapted to the nonlocal case, with the result

that the nonlocal term can be reabsorbed in the pure Chern-Simons through a nonlocal

�eld rede�nition. Remarkably in half and in spite of the nonlocality, the rede�ned gauge

�eld will still transform as a connection, due to the fact that the coe�cients entering the

nonlocal rede�nition turn out to be covariant, as it will be shown in the next example.

Thus, a great amount of nonlocal quantum e�ects coming from nonlocal terms built

with F can be taken into account by interpreting the Chern-Simons as a gauge invariant

functional de�ned on the space of the gauge connections of the type bA = A+ �A, where

�A contains now both local and nonlocal covariant terms, �A = �Aloc + �Anloc:

In order to have a better feeling of how things go in the nonlocal case, let us compute

the �rst coe�cients #1�; #
2
� for the nonlocal action

Snloc
Y M (A) =

1

4m

Z
d3xd3yF 2(x) jx� yjF 2(y) ; (5.50)
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with

F 2(x) = trF ��(x)F��(x) : (5.51)

The expression (5.50) is one of the simplest nonlocal invariant terms depending on F

which is expected to appear in the loop expansion of �(A). The coe�cients #1�; #
2
� are

easily found to be

#1� =
1

4
"���F

��(x)
Z
d3y jx� yjF 2(y) ; (5.52)

#2� = �
1

8

�Z
d3y jx� yjF 2(y)

�
Dx

�

Z
d3zF �

� (x) jx� zjF 2(z) ;

Dx
� being the covariant derivative acting on the point x: Thus

SCS(A) + S
nloc
Y M (A) = SCS( bA) +O(1=m3) ; (5.53)

with bA� = A� +
1

m
#1� +

1

m2
#2� +O(1=m3) : (5.54)

As anticipated, the coe�cients #1�; #
2
� in eq.(5.52), although nonlocal, transform covariantly10,

so that the rede�ned �eld bA� is still a connection. It is worth emphasizing that the form

of the space-time function between F 2(x) and F 2(y) in the eq.(5.50) is in fact completely

irrelevant. More sophisticated examples of nonlocal F -dependent actions can be worked

out, leading to similar results. We see therefore that a large class of nonlocal terms can

be reabsorbed in the pure Chern-Simons. In our opinion this observation is a signal of the

fact that the aforementioned rigidity of the topological Chern-Simons may persist at the

quantum level. Although we have a solid understanding of the BRST cohomology in the

space of the local functionals [3, 4, 5], the situation is completely di�erent in the nonlocal

case. Up to our knowledge there is no proof of the fact that the nonlocal terms are built

essentially with the �eld strength and its derivatives. Notice that we are not demanding

10Perhaps the covariant character of the coe�cients #� in the nonlocal case could be understood by

noticing that the Lemma of the Section 3, being of a purely geometrical nature, could be in principle

applied to nonlocal actions built up with F and its covariant derivatives.



CBPF-NF-078/97 20

here the complete characterization of the nonlocal terms, including the knowledge of the

space-time dependence of the 1PI n-point Green function �n(x1;::::;xn). A weaker char-

acterization guarantying the simple presence of F would be almost su�cient in order to

establish the quantum equivalence between �(A) and SCS(A): It would be a very nice

event if in the case of the 
at space-time R3 the 1PI e�ective action could be resetted to

a pure Chern-Simons, up to nonlinear �eld rede�nitions.

Let us conclude this section by drawing a possible path in favour of this hypothesis.

The forthcoming considerations heavily rely on a rather appealing suggestion of [13] (see

in particular Sect.IV) and on the explicit one and two loop computations on topological

massive Yang-Mills and on pure Chern-Simons done till now [2, 13, 14, 12, 25, 21, 22].

After having reabsorbed all the nonlocal terms that we can, we should be able to write

the complete 1PI e�ective action �(A) in the following form

�(A) = �SCS( bA) + � ; (5.55)

with bA = A+ �Aloc + �Anloc : (5.56)

The coe�cient11 � in eq.(5.55) is a power series in �h accounting for possible �nite cor-

rections to the Chern-Simons term itself and can be reabsorbed by a further �nite multi-

plicative rede�nition of the gauge �eld and of the coupling constant g:

The extra term � in eq.(5.55) represents all the gauge invariant nonlocal terms which

cannot be reabsorbed through nonlinear �eld rede�nitions. However � should be very

constrained. It should not containm since, due to the eqs.(5.48)12,m-dependent terms are

expected to be related to nonlinear rede�nitions. Then � should survive then the in�nite

mass limit m ! 1: Pure Chern-Simons considerations should thus apply. Therefore,

according to [13] (see Sect.IV), � should be vanishing, due to a parity argument [13] and

to the general covariance of the Chern-Simons in the Landau gauge [21, 22, 23, 24, 28].

11There has been a long discussion in the last years about a possible universal meaning of �. This

question being not addressed here, we remind the original literature [11, 12, 22].
12It is useful to recall here that the action � in eq.(5:44) di�ers from the pure massive topological

Yang-Mills by the in�nite set of gauge parameters �jk.
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In summary, the 1PI e�ective action of topological Yang-Mills in 
at space-time R3

should be resummed to pure Chern-Simons, up to nonlinear �eld rede�nitions. This

behaviour may be completely di�erent for a generic curved three manifold, as other kinds

of topological invariants like the Ray-Singer torsion [26] are expected to appear.

It is rather important to underline here that a nonlocal �eld rede�nition has been in

fact already used by [25] in order to reset the one loop e�ective action of Chern-Simons

in the light cone gauge to a pure Chern-Simons action.

Other kinds of three dimensional e�ective actions, as for instance the fermionic deter-

minant of a two component massive spinor could be contemplated. Indeed, the in�nite

mass limit of the abelian fermionic determinant in 
at space-time is nothing but pure

Chern-Simons [27]: Moreover, the perturbative expression obtained so far for the abelian

determinant can be easily reabsorbed through nonlinear rede�nitions [29] into a pure

Chern-Simons, providing thus a further evidence

5.3 Final remarks

We emphasize once again that the interpretation of the Chern-Simons as a gauge invariant

functional which is able to reproduce any given local Yang-Mills type action is rather

attractive.

Whether this pure geometrical set up can be extended at the level of the full 1PI

e�ective quantum action is still an open question. In any case a great part of �(A) can

be certainly resetted to a pure Chern-Simons term up to nonlinear �eld rede�nitions.

It is worth underlining that the covariant character of the coe�cients #� (in both local

and nonlocal case) which allows to interpret the rede�ned �eld bA� as a gauge connection

could shed some light on the role of the nonlinear �eld rede�nitions in quantum �eld

theory. This point could be of a certain relevance within the new recent perspectives on

the renormalization of gauge theories [16].

The present results naturally remind us the relationship with general relativity. After

all, being bA� a connection, the resulting action SCS( bA) is gauge invariant and looks as

good as the initial one SCS(A). This suggests that, as far as the gauge invariance is

taken as the guide principle in order to select appropriate actions, we should still have
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the freedom of choosing the connection.

The inclusion of matter �elds is under investigation.

We hope, �nally, that this work will be of some help in order to improve our present

understanding of three dimensional gauge theories and of the role of the topological ac-

tions.
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A Appendix

A.1 Extended BRST technique

The extended BRST technique [19] is a very powerful tool which allows to control the

dependence of the theory at the quantum level from parameters associated to exact BRST

terms. Let us present here how this technique works in the case of the parameter m of

the action � in eq.(5.44)

� = S + tr
Z
d3x

�
b@A+ @�cD�c+A��D

�c� gc�c2
�
; (A.57)

with

S(A) = SCS(A) +
1

4m
tr
Z
d3xF��F

�� +
1X
j=2

1

mj

0@ dkX
k=1

�j
kS

k
j (A)

1A : (A.58)

The action � obeys the classical Slavnov-Taylor identity

tr
Z
d3x

 
��

�A�

��

�A��
+

��

�c

��

�c�
+ b

��

�c

!
= 0 ; (A.59)
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from which it follows that the so called linearized operator B� de�ned as

B� = tr
Z
d3x

 
��

�A�

�

�A��
+

��

�A��
�

�A�

+
��

�c

�

�c�
+

��

�c�
�

�c
+ b

�

�c

!
; (A.60)

is nilpotent

B�B� = 0 : (A.61)

As it is well known [7], this operator identi�es the full BRST di�erential acting on the

�elds and anti�elds.

Owing to the results of Sects.3,4, we have

@�

@m
= B�� ; (A.62)

� being an integrated local formal power series in the �elds and anti�elds of ghost number

-1. According to [19], we introduce the term � in the classical action � by means of a

constant parameter � of ghost number 1, namely

e� = �+ �� : (A.63)

Let us now compute the quantity

tr
Z
d3x

 
� e�
�A�

� e�
�A��

+
� e�
�c

� e�
�c�

+ b
� e�
�c

!
: (A.64)

The expression (A.64) is expected to be nonvanishing, due to the use of the modi�ed

action e�. However, due to the fact that �� = 0; we easily get

tr
Z
d3x

 
� e�
�A�

� e�
�A��

+
� e�
�c

� e�
�c�

+ b
� e�
�c

!
= ��B�� : (A.65)

Therefore from

�B�� = �
@�

@m
= �

 
@ e�
@m

� �
@�

@m

!
= �

@ e�
@m

; (A.66)

it follows that the action e� satis�es the modi�ed Slavnov-Taylor identity

Z
d3xtr

 
� e�
�A�

� e�
�A��

+
� e�
�c

� e�
�c�

+ b
� e�
�c

!
+ �

@ e�
@m

= 0 : (A.67)



CBPF-NF-078/97 24

This expression is easily recognized to be of the type of an extended Slavnov-Taylor

identity [19]. In fact, from a cohomological point of view the parameters �;m form a

doublet, i.e.

Be�m = � ; Be�� = 0 : (A.68)

The absence of gauge anomalies in three dimensions (see Subsect.2.2) guaranties thus that

the identity (A.67) holds at the quantum level

Z
d3xtr

 
�e�
�A�

�e�
�A��

+
�e�
�c

�e�
�c�

+ b
�e�
�c

!
+ �

@e�
@m

= 0 : (A.69)

Acting now on the expression (A.69) with the test operator @=@� and setting � to zero we

immediately get

@�

@m
= B� [� � �] ; (A.70)

� = e����
�=0

;

thereby proving the statement (5.48) : The same procedure applies to the parameters �j

k as

well as to the energy-momentum tensor. In the latter case the extended BRST technique

has to be done twice. First one considers the integrated insertion
R
d3x

h
T �

� � �
i
, for which

one gets

Z
d3x

h
T �

� � �
i
= BRST � variation : (A.71)

A further application of the extended BRST technique with local space-time dependent

parameters allows to obtain the �nal result (5.48) :
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