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Using gyroscopes we generalize results obtained for the gravitomagnetic clock e�ect in the particular
case when the exterior spacetime is produced by a rotating dust cylinder to the case when the
vacuum spacetime is described by the general cylindrically symmetric Lewis spacetime. Results are
contrasted with those obtained for the Kerr space-time.
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1 Introduction

Recently Bonnor and Steadman [1] calculated and anal-
ysed the gravitomagnetic clock e�ect, which is the dif-
ference in periods of a test particle moving in prograde
and retrogade circular geodesic orbits around the axis of
a rotating body. They applied their results to a cylin-
drically symmetric system produced by van Stockum
metric [2] describing a rotating dust cylinder. The ex-
terior spacetime, containing two parameters, is a partic-
ular case of the general vacuum stationary cylindrically
symmetric Lewis metric [2, 3, 4] containing four param-
eters. We extend some of their results to the general
Lewis spacetime by using the results obtained by us [5]
for the gyroscope precession in cylindrically symmetric
spacetimes. The clock e�ect and the gyroscope preces-
sion amount to similar physical processes. However, as
it will be seen below, using gyroscopes allows for wider
class of possible "gedanken" experiments. Indeed, we
have to face with two di�erent e�ects, one is the in
u-
ence of the rotation of the source on the gravitational
�eld where the gyroscope is placed (the gravitomagnetic
e�ect), which of course is absent in Newtonian theory.
The other is related with the fact that the frame of the
gyroscope may be rotating, producing a precession in
the gyroscope (Thomas-like precession).

2 Precession of a gyroscope

moving in a circle around the

axis of symmetry

The Lewis metric can be written as

ds2 = �fdt2 + 2kdtd�+ e�(dr2 + dz2) + ld�2; (1)

where

f = ar1�n � c2r1+n

n2a
; (2)

k = �Af; (3)

l =
r2

f
�A2f; (4)

e� = r(n
2
�1)=2; (5)

with

A =
cr1+n

naf
+ b: (6)

We restrict the metric to the Weyl class by consider-
ing the parameters n; a; b and c real. These parameters
can be either real or complex, and the corresponding
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solutions belong to the Weyl or Lewis classes respec-
tively. Here we restrict our study to the Weyl class
(not to confound with Weyl metrics representing static
and axially symmetric spacetimes). The parameters
n and a being proportional to the Newtonian energy
per unit length and the topological defect respectively;
while b and c describe the stationarity of the source
being proportional to the angular momentum of the
source producing a topological defect and the vorticity
of the source respectively. Now it is important to stress
that the transformations [6]

d� =
p
a(dt+ bd�); (7)

d�� =
1

n
[�cdt+ (n� bc)d�]; (8)

casts the Weyl class of the Lewis metric into the Levi-
Civita metric (static). However the transformations
above are not valid globally, and therefore both met-
rics are equivalent only locally, a fact that can be ver-
i�ed by calculating the corresponding Cartan scalars
[7]. In order to globally transform the Weyl class of the
Lewis metric into the static Levi-Civita metric, we have
to make b = 0. Indeed, if b = 0 and c is di�erent from
zero, (7) gives an admissible transformation for the time
coordinate and (8) represents the transformation to a
rotating frame (implying thereby that the frame of (1)
is itself rotating). In other words, if b = 0, (1) is just
the exterior line element of a static cylinder, as seen
by a rotating observer. However, since rotating frames
(as in special relativity) are not expected to cover the
whole spacetime and furthermore since the new angle
coordinate ranges from �1 to 1, it has been argued
in the past [7] that both b and c, have to vanish for
(7) and (8) to be globally valid. This point of view is
also reinforced by the fact that, assuming that only b
has to vanish in order to globally cast (1) into Levi-
Civita, we are lead to the intriguing result that there is
no dragging outside rotating cylinders. We shall recall
this question later.

The rotation 
 of the compass of inertia, or the gy-
roscope, with respect to a rotating frame with angular
velocity ! moving around the axis of symmetry given by
metric (1) can be easily calculated by using the Rindler-
Perlick method [8]. This consists in transforming the
angular coordinate � by

� = �0 + !t; (9)

where ! is a constant (observe that (8), with b = 0,
de�nes a rotation in the sense opposite to that in (9)).
Then the transformed metric is written in a canonical
form,

ds2 = �e2	(dt� !idx
i)2 + hijdx

idxj; (10)

with latin indexes running from 1 to 3 and 	; !i and
hij depend on the spatial coordinate xi only (we are
omitting primes). Then, it may be shown that the four

acceleration A� and the rotation three vector 
i of the
congruence of world lines xi = constant are given by,

A� = (0;	;i); (11)


i =
1

2
e	(det hmn)

�1=2�ijk!k;j; (12)

where the comma denotes partial derivative. It is clear
from the above that if 	;i = 0, then particles at rest
in the rotating frame follow a circular geodesics. On
the other hand, since 
i describes the rate of rotation
with respect to the proper time at any point at rest
in the rotating frame, relative to the local compass of
inertia, then �
i describes the rotation of the compass
of inertia (the gyroscope) with respect to the rotating
frame. Applying (9) to the original frame of (1), with
t = t0; r = r0 and z = z0, we cast (1) into the canonical
form (10), and obtain (see (45) in [5])


 = MNr(1�n
2)=4

�
M2ar1�n � N2r1+n

n2a

��1

; (13)

where

M = 1 + b!; N = n! � c(1 + b!): (14)

From (13) we can ask if there are !'s for which the
gyroscope precession is null. We see from (13) that the
gyroscope does not precess if M = 0 or N = 0 pro-
ducing 
 = 0 and implying respectively for the angular
velocity of the frame

!M = �1

b
; !N =

c

n� bc
: (15)

The physical meaning of this result will be discussed
below. A similar result has been obtained in [1] but in
the particular context of van Stockum solution, while
our result is general and independent of the source.

The tangential velocity W of the gyroscope moving
around the axis of symmetry for metric (1) is given by
(see (53) in [9])

W =
!(fl + k2)1=2

f � !k
: (16)

Substituting (2-5) into (16), we obtain

W =
n!�

c(1 + b!)(1� c2�2) + nc!�2
; (17)

where

� =
rn

na
: (18)

The angular velocities (15) give, respectively, from (17)
the tangential velocities,

WM =
1

c�
; WN = c�; (19)
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and we observe that these velocities do not depend upon
b in spite of the corresponding angular velocities de-
pend upon b. The Newtonian energy per unit length �
is given, in terms of n, by

� =
1

4
(1� n); (20)

and we consider the range 1 > n > �1 or 0 < � < 1=2.
This range produces physically reasonable cylindrically
symmetric sources [7]. However there exist no circular
timelike geodesics for n < 0, and furthermore it is not
clear that n < 0 represent cylinders [10]. From (19)
we see that when r ! 0 produces, for 1 > n > 0,
WM+ ! 1 and WN+ ! 0, while for 0 > n > �1,
WM� ! 0 and WN� ! �1. We discard WM+ and
WN� as being unphysical. Now, let us suppose that
1 > n > 0, then 
 vanishes for ! = !N . If furthermore
b = 0, then it follows at once from (8), that transfor-
mation (9) brings the system back to the non-rotating
frame (the frame in which the line element is static),
thereby explaining the vanishing of the precession. The
remarkable fact, however, is that 
 vanishes for !N ,
even if b is di�erent from zero. As for !M , we have not
a reasonable interpretation, unless we accept that (1)
describes a cylinder only if 1 > n > 0.

Now we study the case of in�nite precession, 
 !
1, for the gyroscope moving around the axis of sym-
metry. From (13) we have then

rn =
Mna

N
; (21)

and considering (14), we can rewrite (21) for the angu-
lar velocity of the rotating frame,

! =
1 + c�)

n�� b(1 + c�)
: (22)

The corresponding tangential speed of the gyroscope
becomes, using (16), (17) and (22)

W = 1; (23)

which means that the gyroscope attains in�nite preces-
sion when its tangential velocity around the axis be-
comes the light velocity.

3 Precession of a gyroscope at

rest

If the gyroscope is at rest in the original lattice, then
we have (see (32) in [5])


 =
cr(1�n)(n�3)=4

a(1� c2�2)
: (24)

(Observe that it is the absolute value of 
 what ap-
pears in (31),(32),(33) and (34) in [5].) We see that the
precession is in�nite if c� = 1. It is remarkable that
for c� = 1, if the gyroscope is moving around the axis
of symmetry, produces a tangential speed of light (19),
WN+ = 1, with null precession, but in this case, while
at rest its precession becomes in�nite. On the other
hand, when b = 0 and c = 0, i.e., when the Weyl class
of Lewis becomes the static Levi-Civita spacetime, the
precession of a gyroscope moving around the axis of
symmetry results in


 =
n!r(1�n)(n�3)=4

a(1� n2!2�2)
; (25)

with a tangential velocity obtained from (17)

W = n!�: (26)

We observe that the gyroscope precession is the same
in both cases, (24) and (25), if the angular velocity of
the gyroscope, in the Levi-Civita spacetime, is related
to the vorticity, of Lewis spacetime, by

! =
c

n
: (27)

These two equal precessions, (24) and (25), suggest
that (if b = 0) it is equivalent to measure the preces-
sion of a gyroscope at rest with respect to the rotat-
ing Lewis source or moving around the corresponding
static source. This situation in turn, is a reminiscense
of the non-Machian behaviour of Newtonian gravity,
where gravitomagnetic e�ects are absent.

4 Precession of a gyroscope in a

locally non rotating frame

Using the transformation

d� = d��+ !dt; (28)

where ! is

! = �k

l
; (29)

the Lewis metric (1) transforms into a diagonal form
near r = r0. This frame is called locally non rotating
[11, 12]. >From (28) for the Lewis metric (1) we have

c

! =
n3a2c� 2n2a2bc2 + (bc� n)c3r2n0 + n4a4br�2n0

n4a2 � 2n3a2bc+ 2n2a2b2c2 � (n� bc)c2r2n0 � n4a4b2r�2n0

; (30)
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d

which can be rewritten with (18),

! =
(n � bc)c�20 + b

(n� bc)2�20 � b2
; (31)

where �0 = �(r0). The tangential velocity (17) with
(31) becomes,

W =
(n� bc)c�20 + b

n�0
: (32)

and the precession (13) with (31) becomes,


 =
b(n � bc)r

(1�n)(n�3)=4
0

a[(n� bc)2�20 � b2]
: (33)

From (31) there are two cases where ! does not de-
pend upon a particular radius r0 and produce no pre-
cession according to (33). These cases are, for b = 0

! =
c

n
; W = c�0; (34)

and for bc = n,

! = �1

b
; W =

1

c�0
; (35)

where we have included, from (32), the corresponding
tangential velocities. We see from (34) that the result
corresponds to what we obtained for !N in (15) and
agreeing with the analysis of the gyroscope at rest (24)
compared to the precession in Levi-Civita's spacetime
(25). However the case (35), while producing a simi-
lar result compared to !M in (15), imposes the relation
b = n=c. When b 6= 0 and b 6= n=c the locally non
rotating frame produces non null precession.

5 The Kerr spacetime

It is instructive to compare the situation described
above with that in the Kerr spacetime. In Boyer-
Lindquist coordinates with � = �=2 the Kerr metric
has the form (the Kerr parameter a, describing the spe-
ci�c angular momentum, no to be confounded with the
parameter a of the Lewis metric),

ds2 = �
�
1� 2m

r

�
dt2 � 4am

r
dtd�+

1

�
dr2

+

�
r2 + a2 +

2a2m

r

�
d�2: (36)

where

� = 1� 2m

r
+

a2

r2
: (37)

Then, applying the Rindler-Perlick method, one ob-
tains after some lengthy calculations

e2	 = �; (38)

!i = (0; 0; !�); (39)

!� =
1

�

�
!(r2 + a2)� 2am

r
(1� a!)

�
; (40)

hrr =
1

�
; (41)

h�� =
�

�
r2: (42)

with

� = 1� !2(r2 + a2)� 2m

r
(1� a!)2: (43)

Substituting (38-42) into (12) we obtain


 =
2

�

�
! � 3m

r
!(1 � a!) +

am

r3
(1� a!)2

�
: (44)

The value of the angular velocity ! for which there
is no precession (
 = 0), is easily obtained from (44) to
be

! = �r2(r � 3m)� 2ma2 �
p
r4(r � 3m)2 � 4ma2r3

2ma(3r2 + a2)
(45)

which is the same value for which prograde and ret-
rograde circular geodesics have the same period [13],
and which leads to the condition of no clock e�ect in
[1], after replacing ! by its expression for a circular
geodesic. This result was obtained before [14] and (to-
gether with other properties) led some authors to sug-
gest that natural non-rotating observers are those mov-
ing with angular velocity (45) (see [13] and references
therein). This identi�cation however, is not necessarily
correct. In fact observe that a gyroscope at rest in the
frame of (36) (! = 0) will precess unless a = 0, re
ect-
ing the well known fact that the original frame of (36)
is itself rotating with respect to a compass of inertia
[8]. Therefore the vanishing of 
 for observers rotating
with angular velocity (45) only shows that the grav-
itational dragging e�ect of the source exactly cancels
the Thomas-like precession due to the rotation of the
frame where the gyroscope is placed. A frame, which
as shown in [1] rotates relative to distant stars. Under
these circumstances it becomes di�cult to accept that
those observers represent \the most natural standard
of non-rotation"
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6 Conclusions

We have seen that a gyroscope at rest in the frame of
(1) will precess independently of b and in a similar way
as a gyroscope moving around a static source with an-
gular velocity given by (27). This result together with
the fact that transformations (7) and (8) cast (1) into
a static Levi-Civita's line element if b = 0, would indi-
cate that the rotation of the source does not a�ect the
gyroscope. However for the gyroscope moving around
the source, there exist two possible angular velocities
for which there is no precession. The physical meaning
of one of them (!M ) is not understood by the authors,
unless the range of n is restricted to 1 > n > 0, in
which case it is discarded. The situation with !N is
clear if b = 0, in which case (9) is just a transforma-
tion to the non rotating frame if ! = !N . However
if b is not vanishing, then the reasons for the vanish-
ing of 
 are obscure. Finally if we de�ne a locally non
rotating frame acording to (28) and (29), then we see
that a gyroscope at rest in such a frame will precess ac-
cording to (33). The origin of this precession is rather
surprising if we note that it appears even if n = a = 1
(Minkowski) and c = 0. But under these conditions,
(1) is not the Minkowskian line element corresponding
to a rotating frame. So the question here is, what is the
nature of b, that makes the gyroscope precess? In the
Kerr case we have seen that the frame in which 
 = 0
can hardly be called non-rotating. The di�erence with
Lewis case (with b = 0) becomes intelligible, if we note
that the frame of (36) with m = 0 does not represent a
rotating Minkowskian observer, a conclusion con�rmed
by the fact that (44) with m = ! = 0 yields 
 = 0.
However, as mentioned before, the frame of (36) is ro-
tating with respect to a compass of inertia if m 6= 0
(yielding 
 6= 0). This is in contrast with the Lewis

case, where 
 is not vanishing for the gyroscope at rest
in (1) in the case n = 1 (Minkowski).This conspicu-
ous di�erence in the relation between the source of the
�eld and the rotation, in both cases, seems to suggest,
loosely speaking, that the behaviour of the Kerr metric
is more \Machian" than that of Lewis.
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