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The Bohm-de Broglie interpretation of quantum mechanics is applied to canonical quan-

tum cosmology. It is shown that, irrespective of any regularization or choice of factor

ordering of the Wheeler-DeWitt equation, the unique relevant quantum e�ect which does

not break spacetime is the change of its signature from lorentzian to euclidean. The other

quantum e�ects are either trivial or break the four-geometry of spacetime. A Bohm-de

Broglie picture of a quantum geometrodynamics is constructed, which allows the investi-

gation of these latter structures. For instance, it is shown that any real solution of the

Wheeler-De Witt equation yields a generate four-geometry compatible with the strong

gravity limit of General Relativity and the Carroll group. Due to the more detailed de-

scription of quantum geometrodynamics given by the Bohm-de Broglie interpretation,

some new boundary conditions on solutions of the Wheeler-DeWitt equation must be

imposed in order to preserve consistency of this �ner view.
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1 Introduction

Almost all physicists believe that quantum mechanics is a universal and fundamental theory, applicable

to any physical system, from which classical physics can be recovered. The Universe is, of course, a valid

physical system: there is a theory, Standard Cosmology, which is able to describe it in physical terms, and

make predictions which can be con�rmed or refuted by observations. In fact, the observations until now

con�rm the standard cosmological scenario. Hence, supposing the universality of quantummechanics, the

Universe itself must be described by quantum theory, from which we could recover Standard Cosmology.

However, the Copenhaguen interpretation of quantum mechanics [1, 2, 3]1, which is the one taught

in undergraduate courses and employed by the majority of physicists in all areas (specially the von

Neumann's approach), cannot be used in a Quantum Theory of Cosmology. This is because it imposes

the existence of a classical domain. In von Neumann's view, for instance, the necessity of a classical

domain comes from the way it solves the measurement problem (see Ref. [4] for a good discussion). In an

impulsive measurement of some observable, the wave function of the observed system plus macroscopic

apparatus splits into many branches which almost do not overlap (in order to be a good measurement),

each one containing the observed system in an eigenstate of the measured observable, and the pointer of

the apparatus pointing to the respective eigenvalue. However, in the end of the measurement, we observe

only one of these eigenvalues, and the measurement is robust in the sense that if we repeat it immediately

after, we obtain the same result. So it seems that the wave function collapses, the other branches

disappear. The Copenhaguen interpretation assumes that this collapse is real. However, a real collapse

cannot be described by the unitary Schr�odinger evolution. Hence, the Copenhaguen interpretation must

assume that there is a fundamental process in a measurement which must occur outside the quantum

world, in a classical domain. Of course, if we want to quantize the whole Universe, there is no place

for a classical domain outside it, and the Copenhaguen interpretation cannot be applied. Note that

decoherence cannot solve this problem [5, 6]. It can explain why the splitting of the wave function is

given in terms of the pointer basis states, and why we do not see superpositions of macroscopic objects,

due to the e�ective diagonalization of the reduced density matrix. However it does not explain the

collapse after the measurement is completed, or why all but one of the diagonal elements of the density

matrix become null when the measurement is �nished. Hence, if someone insists with the Copenhaguen

interpretation, she or he must assume that quantum theory is not universal, or at least try to improve

it by means of further concepts like in the consistent histories approach [7], which is however incomplete

until now. Nevertheless, there are some ways out from this dilemma. We can say that the Schr�odinger

1Athough these three authors have di�erent views from quantum theory, the �rst emphasizing the

indivisibility of quantum phenomena, the second with his notion of potentiality, and the third with the

concept of quantum states, for all of them the existence of a classical domain is crucial. That is why we

group their approaches under the same name \Copenhaguen interpretation".
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evolution is an approximation of a more fundamental non-linear theory which can accomplish the collapse

[8, 9], or that the collapse is e�ective but not real, in the sense that the other branches disappear from

the observer but do not disappear from existence. In this second category we can cite the Many-Worlds

Interpretation [10] and the Bohm-de Broglie Interpretation [11, 12]. In the former, all the possibilities

in the splitting are actually realized. In each branch there is an observer with the knowledge of the

corresponding eigenvalue of this branch, but she or he is not aware of the other observers and the other

possibilities because the branches do not interfere. In the latter, a point-particle in con�guration space

describing the observed system and apparatus is supposed to exist, independently on any observations.

In the splitting, this point particle will enter into one of the branches (which one depends on the initial

position of the point particle before the measurement, which is unknown), and the other branches will be

empty. It can be shown [12] that the empty waves can neither interact with other particles, nor with the

point particle containing the apparatus. Hence, no observer can be aware of the other branches which

are empty. Again we have an e�ective but not real collapse (the empty waves continue to exist), but now

with no multiplication of observers. Of course these interpretations can be used in quantum cosmology.

Schr�odinger evolution is always valid, and there is no need of a classical domain outside the observed

system.

In this paper we will foccus on the application of the Bohm-de Broglie interpretation to quantum

cosmology [13, 14, 15, 16]. In this approach, the fundamental object of quantum gravity, the geometry

of 3-dimensional spacelike hypersurfaces, is supposed to exist independently on any observation or mea-

surement, as well as its canonical momentum, the extrinsic curvature of the spacelike hypersurfaces. Its

evolution, labeled by some time parameter, is dictated by a quantum evolution that is di�erent from the

classical one due to the presence of a quantum potential which appears naturally from the Wheeler-DeWitt

equation. This interpretation has been applied to many minisuperspace models [13, 16, 17, 18, 19, 20],

obtained by the imposition of homogeneity of the spacelike hypersurfaces. The classical limit, the singu-

larity problem, the cosmological constant problem, and the time issue have been discussed. For instance,

in some of these papers it was shown that in models involving scalar �elds or radiation, which are nice

representatives of the matter content of the early universe, the singularity can be clearly avoided by quan-

tum e�ects. In the Bohm-de Broglie interpretation description, the quantum potential becomes important

near the singularity, yielding a repulsive quantum force counteracting the gravitational �eld, avoiding the

singularity and yielding in
ation. The classical limit (given by the limit where the quantum potential

becomes negligible with respect to the classical energy) for large scale factors are usually attainable, but

for some scalar �eld models it depends on the quantum state and initial conditions. In fact it is possible

to have small classical universes and large quantum ones [20]. About the time issue, it was shown that for

any choice of the lapse function the quantum evolution of the homogeneous hypersurfaces yield the same

four-geometry [16]. What remained to be studied is if this fact remains valid in the full theory, where we

are not restricted to homogeneous spacelike hypersurfaces. The question is, given an initial hypersurface
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with consistent initial conditions, does the evolution of the initial three-geometry driven by the quantum

bohmian dynamics yields the same four-geometry for any choice of the lapse and shift functions? We

know that this is true if the three-geometry is evolved by the dynamics of classical General Relativity

(GR), but it can be false if the evolving dynamics is the quantum bohmian one. The purpose of this

paper is to study and answer this question in detail. The idea is to put the quantum bohmian dynamics

in hamiltonian form, and then use strong results presented in the literature exhibiting the most general

form that a hamiltonian should have in order to form a four-geometry from the evolution of 3-geometries

[21]. Our conclusion is that, in general, the quantum bohmian evolution of the 3-geometries does not

yield any four-geometry at all. Only for very special quantum states a quantum four-geometry can be

obtained, and it must be euclidean. Hence, our answer to the question in the title is in the a�rmative.

More important, we arrive at these conclusions without assuming any regularization and factor ordering

of the Wheeler-DeWitt equation. As we know, the Wheeler-DeWitt equation involves the application

of the product of local operators on states at the same space point, which is ill de�ned [22]. Hence we

need to regularize it in order to solve the factor ordering problem, and have a theory free of anomalies

(for some proposals, see Refs [23, 24, 25]). Our conclusions are completly independent on these issues.

Also, even in the general case where there is no four-geometry, we can obtain a picture of the quantum

structure yielded by the bohmian dynamics, which is not a spacetime but something else, as the generate

4-geometries compatible with the Carroll group [26].

This paper is organized as follows: in the next section we review the Bohm-de Broglie interpretation

of quantum mechanics for non-relativistic particles and quantum �eld theory in 
at spacetime. In section

3 we apply the Bohm-de Broglie interpretation to canonical quantum gravity. In section 4 we prove that

the bohmian evolution of the 3-geometries, irrespective of any regularization and factor ordering of the

Wheeler-DeWitt equation, can be obtained from a speci�c hamiltonian, which is of course di�erent from

the classical one. We then use this hamiltonian to obtain the main results of our paper concerning the

possibilities of obtaining quantum 4-geometries, and the procedure of obtaining a picture of other quantum

structures. The classical limits of these many possibilities are also discussed. We end with conclusions

and many perspectives for future work. In the appendix we present a concrete midisuperspace example

of some quantum states which illustrates the discussion of section 4.
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2 The Bohm-de Broglie Interpretation

In this section we will review the Bohm-de Broglie interpretation of quantum mechanics. We will �rst

show how this interpretation works in the case of a single particle described by a Schr�odinger equation,

and then we will obtain, by analogy, the causal interpretation of quantum �eld theory in 
at spacetime.

Let us begin with the Bohm-de Broglie interpretation of the Schr�odinger equation describing a single

particle. In the coordinate representation, for a non-relativistic particle with HamiltonianH = p2=2m+

V (x); the Schr�odinger equation is

i�h
@	(x; t)

@t
=

�
�
�h2

2m
r2 + V (x)

�
	(x; t): (1)

We can transform this di�erential equation over a complex �eld into a pair of coupled di�erential equations

over real �elds, by writing 	 = A exp(iS=�h), where A and S are real functions, and substituting it into

(1). We obtain the following equations.

@S

@t
+

(rS)2

2m
+ V �

�h2

2m

r2A

A
= 0; (2)

@A2

@t
+r�

�
A2rS

m

�
= 0: (3)

The usual probabilistic interpretation, i.e. the Copenhagen interpretation, understands equation (3) as

a continuity equation for the probability density A2 for �nding the particle at position x and time t. All

physical information about the system is contained in A2, and the total phase S of the wave function

is completely irrelevant. In this interpretation, nothing is said about S and its evolution equation (2).

However, when the term �h2

2m
r

2A
A is negligible, we can interpret Eqs. (2) and (3) as equations for an

ensemble of classical particles under the in
uence of a classical potential V through the Hamilton-Jacobi

equation (2), whose probability density distribution in space A2(x; t) satis�es the continuity equation (3),

where rS(x; t)=m is the velocity �eld v(x; t) of the ensemble of particles. When �h2

2m
r

2A
A is not negligible,

we can still understand Eq. (2) as a Hamilton-Jacobi equation for an ensemble of particles. However,

their trajectories are no more the classical ones, due to the presence of the quantum potential term in

Eq. (2).

The Bohm-de Broglie interpretation of quantum mechanics is based on the two equations (2) and (3)

in the way outlined above, not only on the last one as it is the Copenhagen interpretation. The starting

idea is that the position x and momentum p are always well de�ned, with the particle's path being guided

by a new �eld, the quantum �eld. The �eld 	 obeys Schr�odinger equation (1), which can be written

as the two real equations (2) and (3). Equation (2) is interpreted as a Hamilton-Jacobi type equation

for the quantum particle subjected to an external potential, which is the classical potential plus the new

quantum potential

Q � �
�h2

2m

r2A

A
: (4)
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Once the �eld 	, whose e�ect on the particle trajectory is through the quantum potential (4), is obtained

from Schr�odinger equation, we can also obtain the particle trajectory, x(t); by integrating the di�erential

equation p = m _x = rS(x; t), which is called the guidance relation (a dot means time derivative). Of

course, from this di�erential equation, the non-classical trajectory x(t) can only be known if the initial

position of the particle is given. However, we do not know the initial position of the particle because

we do not know how to measure it without disturbances (it is the hidden variable of the theory). To

agree with quantum mechanical experiments, we have to postulate that, for a statistical ensemble of

particles in the same quantum �eld 	, the probability density distribution of initial positions x0 is

P (x0; t0) = A2(x0; t = t0). Equation (3) guarantees that P (x; t) = A2(x; t) for all times. In this way, the

statistical predictions of quantum theory in the Bohm-de Broglie interpretation are the same as in the

Copenhaguen interpretation2.

It is interesting to note that the quantum potential depends only on the form of 	, not on its absolute

value, as can be seen from equation (4). This fact brings home the non-local and contextual character

of the quantum potential3. This is a necessary feature because Bell's inequalities together with Aspect's

experiments show that, in general, a quantum theory must be either non-local or non-ontological. As

the Bohm-de Broglie interpretation is ontological, than it must be non-local, as it is. The non-local and

contextual quantum potential causes the quantum e�ects.

The function A plays a dual role in the Bohm-de Broglie interpretation: it gives the quantum potential

and the probability density distribution of positions, but this last role is secondary. If in some model there

is no notion of probability, we can still get information from the system using the guidance relations. In

this case, A2 does not need to be normalizable. The Bohm-de Broglie interpretation is not, in essence, a

probabilistic interpretation. It is straightforward to apply it to a single system.

The classical limit can be obtained in a very simple way. We only have to �nd the conditions for

having Q = 0. There is no need to have a classical domain because this interpretation is ontological. The

question on why in a real measurement we see an e�ective collapse of the wave function is answered by

noting that, in a measurement, the wave function splits in a superposition of non-overlapping branches.

Hence the point particle (representing the particle being measured plus the macroscopic apparatus) will

enter into one particular branch, which one depends on the initial conditions, and it will be in
uenced by

the quantum potential related only with this branch, which is the only one that is not negligible in the

2It has been shown that under typical chaotic situations, and only within the Bohm-de Broglie in-

terpretation, a probability distribution P 6= A2 would rapidly approach the value P = A2 [27, 28]. In

this case, the probability postulate would be unnecessary, and we could have situations, in very short

time intervals, where this modi�ed Bohm-de Broglie interpretation would di�er from the Copenhaguen

interpretation.
3The non-locality of Q becomes evident when we generalize the causal interpretation to a many

particles system.
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region where the point particle actually is. The other empty branches continue to exist, but they neither

in
uence on the point particle nor on any other particle [12]. There is an e�ective but not real collapse.

The Schr�odinger equation is always valid.

For quantum �elds in 
at spacetime, we can apply a similar reasoning. As an example, take the

Schr�odinger functional equation for a quantum scalar �eld:

i�h
@	(�; t)

@t
=

Z
d3x

�
1

2

�
� �h2

�2

��2
+ (r�)2

�
+U (�)

�
	(�; t): (5)

Writing again the wave functional as 	 = A exp(iS=�h), we obtain:

@S

@t
+

Z
d3x

�
1

2

��
�S

��

�2

+(r�)2
�
+U (�) + Q(�)

�
= 0; (6)

@A2

@t
+

Z
d3x

�

��

�
A2 �S

��

�
= 0; (7)

where Q(�) = ��h2 1
2A

�2A
��2 is the corresponding (unregulated) quantum potential. The �rst equation is

viewed as a modi�ed Hamilton-Jacobi equation governing the evolution of some initial �eld con�guration

through time, which will be di�erent from the classical one due to the presence of the quantum potential.

The guidance relation is now given by

�� = _� =
�S

��
: (8)

The second equation is the continuity equation for the probability density A2[�(x); t0] of having the initial

�eld con�guration at time t0 given by �(x).

A detailed analysis of the Bohm-de Broglie interpretation of quantum �eld theory is given in Ref.

[29] for the case of quantum electrodynamics.

3 The Bohm-de Broglie Interpretation of Canonical

Quantum Cosmology

Let us now apply the Bohm-de Broglie interpretation to canonical quantum cosmology. We will quantize

General Relativity Theory (GR) where the matter content is a minimally coupled scalar �eld with ar-

bitrary potential. All subsequent results remain essentially the same for any matter �eld which couples

uniquely with the metric, not with their derivatives.

The classical hamiltonian of GR with a scalar �eld is given by:

H =

Z
d3x(NH +N jHj) (9)

where

H = �Gijkl�
ij�kl +

1

2
h�1=2�2

� +

+h1=2
�
� ��1(R(3) � 2�) +

1

2
hij@i�@j�+ U (�)

�
(10)

Hj = �2Di�
i
j + ��@j�: (11)
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In these equations, hij is the metric of closed 3-dimensional spacelike hypersurfaces, and �ij is its

canonical momentum given by

�ij = �h1=2(Kij � hijK) = Gijkl( _hkl �DkNl �DlNk); (12)

where

Kij = �
1

2N
( _hij �DiNj �DjNi); (13)

is the extrinsic curvature of the hypersurfaces (indices are raisen and lowered by the 3-metric hij and its

inverse hij). The canonical momentum of the scalar �eld is now

�� =
h1=2

N

�
_��N i@i�

�
: (14)

The quantity R(3) is the intrinsic curvature of the hypersurfaces and h is the determinant of hij. The lapse

function N and the shift functionNj are the Lagrange multipliers of the super-hamiltonian constraintH �

0 and the super-momentum constraint Hj � 0, respectively. They are present due to the invariance of GR

under spacetime coordinate transformations. The quantities Gijkl and its inverse Gijkl (GijklGijab = �abkl )

are given by

Gijkl =
1

2
h1=2(hikhjl + hilhjk � 2hijhkl); (15)

Gijkl =
1

2
h�1=2(hikhjl + hilhjk � hijhkl); (16)

which is called the DeWitt metric. The quantity Di is the i-component of the covariant derivative

operator on the hypersurface, and � = 16�G=c4.

The classical 4-metric

ds2 = �(N2 �N iNi)dt
2 + 2Nidx

idt+ hijdx
idxj (17)

and the scalar �eld which are solutions of the Einstein's equations can be obtained from the Hamilton's

equations of motion

_hij = fhij;Hg; (18)

_�ij = f�ij;Hg; (19)

_� = f�;Hg; (20)

_�� = f��;Hg; (21)

for some choice of N and N i, and if we impose initial conditions compatible with the constraints

H � 0; (22)

Hi � 0: (23)

It is a feature of the hamiltonian of GR that the 4-metrics (17) constructed in this way, with the same

initial conditions, describe the same four-geometry for any choice of N and N i.
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The algebra of the constraints close in the following form (we follow the notation of Ref. [21]):

fH(x);H(x0)g = Hi(x)@i�
3(x; x0)�Hi(x0)@i�

3(x0; x)

fHi(x);H(x
0)g = H(x)@i�

3(x; x0) (24)

fHi(x);Hj(x
0)g = Hi(x)@j�

3(x; x0) +Hj(x
0)@i�

3(x; x0)

To quantize this constrained system, we follow the Dirac quantization procedure. The constraints

become conditions imposed on the possible states of the quantum system, yielding the following quantum

equations:

Ĥi j 	> = 0 (25)

Ĥ j 	> = 0 (26)

In the metric and �eld representation, the �rst equation is

� 2hliDj
�	(hij; �)

�hlj
+
�	(hij ; �)

��
@i� = 0; (27)

which implies that the wave functional 	 is an invariant under space coordinate transformations.

The second equation is the Wheeler-DeWitt equation [30, 31]. Writing it unregulated in the coordi-

nate representation we get�
� �h2

�
�Gijkl

�

�hij

�

�hkl
+

1

2
h�1=2

�2

��2

�
+V

�
	(hij ; �) = 0; (28)

where V is the classical potential given by

V = h1=2
�
� ��1(R(3) � 2�) +

1

2
hij@i�@j�+ U (�)

�
: (29)

This equation involves products of local operators at the same space point, hence it must be regularized.

After doing this, one should �nd a factor ordering which makes the theory free of anomalies, in the sense

that the commutator of the operator version of the constraints close in the same way as their respective

classical Poisson brackets (24). Hence, Eq. (28) is only a formal one which must be worked out [23, 24, 25].

Let us now see what is the Bohm-de Broglie interpretation of the solutions of Eqs. (25) and (26) in

the metric and �eld representation. First we write the wave functional in polar form 	 = A exp(iS=�h),

where A and S are functionals of hij and �. Substituting it in Eq. (27), we get two equations saying

that A and S are invariant under general space coordinate transformations:

� 2hliDj
�S(hij ; �)

�hlj
+
�S(hij ; �)

��
@i� = 0; (30)

� 2hliDj
�A(hij; �)

�hlj
+
�A(hij ; �)

��
@i� = 0: (31)
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The two equations we obtain for A and S when we substitute 	 = A exp(iS=�h) into Eq. (26) will of

course depend on the factor ordering we choose. However, in any case, one of the equations will have the

form

�Gijkl
�S

�hij

�S

�hkl
+

1

2
h�1=2

�
�S

��

�2

+V +Q = 0; (32)

where V is the classical potential given in Eq. (29). Contrary to the other terms in Eq. (32), which are

already well de�ned, the precise form of Q depends on the regularization and factor ordering which are

prescribed for the Wheeler-DeWitt equation. In the unregulated form given in Eq. (28), Q is

Q = ��h2
1

A

�
�Gijkl

�2A

�hij�hkl
+
h�1=2

2

�2A

��2

�
: (33)

Also, the other equation besides (32) in this case is

�Gijkl
�

�hij

�
A2 �S

�hkl

�
+
1

2
h�1=2

�

��

�
A2 �S

��

�
= 0: (34)

Let us now implement the Bohm-de Broglie interpretation for canonical quantum gravity. First of

all we note that Eqs. (30) and (32), which are always valid irrespective of any factor ordering of the

Wheeler-DeWitt equation, are like the Hamilton-Jacobi equations for GR, suplemented by an extra term

Q in the case of Eq. (32), which we will call the quantum potential. By analogy with the cases of

non-relativistic particle and quantum �eld theory in 
at spacetime, we will postulate that the 3-metric of

spacelike hypersurfaces, the scalar �eld, and their canonical momenta always exist, independent on any

observation, and that the evolution of the 3-metric and scalar �eld can be obtained from the guidance

relations

�ij =
�S(hab; �)

�hij
; (35)

�� =
�S(hij ; �)

��
; (36)

with �ij and �� given by Eqs. (12) and (14), respectively. Like before, these are �rst order di�erential

equations which can be integrated to yield the 3-metric and scalar �eld for all values of the t parameter.

These solutions depend on the initial values of the 3-metric and scalar �eld at some initial hypersurface.

The evolution of these �elds will of course be di�erent from the classical one due to the presence of the

quantum potential term Q in Eq. (32). The classical limit is once more conceptually very simple: it is

given by the limit where the quantum potential Q becomes negligible with respect to the classical energy.

The only di�erence from the previous cases of the non-relativistic particle and quantum �eld theory in


at spacetime is the fact that the equivalent of Eqs. (3) and (7) for canonical quantum gravity, which in

the naive ordering is Eq. (34), cannot be interpreted as a continuity equation for a probabiblity density

A2 because of the hyperbolic nature of the DeWitt metric Gijkl. However, even without a notion of

probability, which in this case would mean the probability density distribution for initial values of the

3-metric and scalar �eld in an initial hypersurface, we can extract a lot of information from Eq. (32)

whatever is the quantum potential Q, as will see now. After we get these results, we will return to this

probability issue in the last section.
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First we note that, whatever is the form of the quantum potential Q, it must be a scalar density of

weight one. This comes from the Hamilton-Jacobi equation (32). From this equation we can express Q

as

Q = ��Gijkl
�S

�hij

�S

�hkl
�
1

2
h�1=2

�
�S

��

�2

�V: (37)

As S is an invariant (see Eq. (30)), then �S=�hij and �S=�� must be a second rank tensor density and

a scalar density, both of weight one, respectively. When their products are contracted with Gijkl and

multiplied by h�1=2, respectively, they form a scalar density of weight one. As V is also a scalar density

of weight one, then Q must also be. Furthermore, Q must depend only on hij and � because it comes

from the wave functional which depends only on these variables. Of course it can be non-local (we show

an example in the appendix), i.e., depending on integrals of the �elds over the whole space, but it cannot

depend on the momenta.

Now we will investigate the following important problem. From the guidance relations (35) and (36)

we obtain the following �rst order partial di�erential equations:

_hij = 2NGijkl
�S

�hkl
+DiNj +DjNi (38)

and

_� = Nh�1=2
�S

��
+ N i@i�: (39)

The question is, given some initial 3-metric and scalar �eld, what kind of structure do we obtain when

we integrate this equations in the parameter t? Does this structure form a 4-dimensional geometry with

a scalar �eld for any choice of the lapse and shift functions? Note that if the functional S were a solution

of the classical Hamilton-Jacobi equation, which does not contain the quantum potential term, then

the answer would be in the a�rmative because we would be in the scope of GR. But S is a solution

of the modi�ed Hamilton-Jacobi equation (32), and we cannot guarantee that this will continue to be

true. We may obtain a complete di�erent structure due to the quantum e�ects driven by the quantum

potential term in Eq. (32). To answer this question we will move from this Hamilton-Jacobi picture of

quantum geometrodynamics to a hamiltonian picture. This is because many strong results concerning

geometrodynamics were obtained in this later picture [21, 32]. We will construct a hamiltonian formalism

which is consistent with the guidance relations (35) and (36). It yields the bohmian trajectories (38) and

(39) if the guidance relations are satis�ed initially. Once we have this hamiltonian, we can use well

known results in the literature to obtain strong results about the Bohm-de Broglie view of quantum

geometrodynamics.
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4 The Bohm-deBroglie View of QuantumGeometro-

dynamics

Examining Eqs. (30) and (32), we can easily guess that the hamiltonian which generates the bohmian

trajectories, once the guidance relations (35) and (36) are satis�ed initially, should be given by:

HQ =

Z
d3x

�
N (H + Q) +N iHi

�
(40)

where we de�ne

HQ � H + Q: (41)

The quantities H and Hi are the usual GR super-hamiltonian and super-momentum constraints given

by Eqs. (10) and (11). In fact, the guidance relations (35) and (36) are consistent with the constraints

HQ � 0 and Hi � 0 because S satis�es (30) and (32). Futhermore, they are conserved by the hamiltonian

evolution given by (40). Let us see this in some detail.

First, we write Eqs. (35) and (36) in a sligthly di�erent form de�ning

�ij � �ij �
�S(hab; �)

�hij
� 0; (42)

and

�� � �� �
�S(hij ; �)

��
� 0: (43)

Let us now calculate f�ij(x);HQ(x0)g; f��(x);HQ(x0)g; f�ab(x);Hi(x0)g and f��(x);Hi(x0)g, and see if

the guidance relations (42) and (43), now viewed as constraints, are conserved by the hamiltonian HQ.

fHQ(x);�
ij(x0)g = �

�Gabcd
�h0ij

�ab�cd +
1

2

�h�1=2

�h0ij
�2
� +

�(V + Q)

�h0ij

+2�Gabcd�
ab �2S

�hcd�h0ij
+ h�

1

2��
�2S

���h0ij

= �
�Gabcd
�h0ij

�
�ab�cd + 2�ab

�S

�hcd

�
+
1

2

�h�
1

2

�h0ij

�
�2
� + 2��

�S

��

�

+2�Gabcd�
ab �2S

�hcd�h0ij
+ h�

1

2��
�S

���h0ij

+
�

�h0ij

�
�Gabcd

�S

�hab

�S

�hcd
+

1

2
h�

1

2

�
�S

��

�2

+V +Q

�
(44)

where the primes denote evaluation at x0.

The last term is zero because of Eq.(32), and we get

fHQ(x);�
ij(x0)g =

�
�

�
�
1

2
Gabcdh

ij
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+
1

2
h�

1

2 (4�ijachbd � �ijabhcd � �ijcdhab)

��
�ab�cd + 2�ab

�S

�hcd

�

�
1

4
h�

1

2hij
�
�2
� + 2��

�S

��

��
�3(x; x0)

+2�Gabcd
�2S

�hcd�h0ij
�ab + h�

1

2

�2S

���h0ij
�� � 0: (45)

In the same way we can prove that

fHQ(x);��(x
0)g = 2�Gabcd

�2S

�hab��0
�cd + h�

1

2

�2S

����0
�� � 0; (46)

where we have used that the functional derivative of Eq. (32) with respect to � is zero.

For the Poisson brackets involving the supermomentum constraint, as S is an invariant because it

satis�es Eq. (30), then �ij and �� are a second rank tensor density and a scalar density, respectively,

both of weigth one. As Hi is the generator of space coordinate transformations, we get

fHi(x);�
ab(x0)g = �2�abci �

cj(x0)@j�
3(x; x0) + �ab(x)@i�

3(x; x0) � 0; (47)

and

fHi(x);��(x
0)g = ��@i�

3(x; x0) � 0 (48)

Combining these results we obtain that

_�ij = f�ij;HQg � 0; (49)

and

_�� = f��;HQg � 0: (50)

Furthermore, the Poisson brackets of (42) and (43) among themselves are all zero. Finally, the de�nitions

of the momenta in terms of the velocities remain the same as in the classical case because the quantum

potential Q does not depend on the momenta:

_hij = fhij;HQg = fhij;Hg; (51)

and

_� = f�;HQg = f�;Hg: (52)

Hence we recover (38) and (39).

We now have a hamiltonian,HQ, which generates the bohmian trajectories once the guidance relations

(35) and (36) are imposed initially. In the following, we can investigate if the the evolution of the �elds

driven by HQ forms a four-geometry like in classical geometrodynamics. First we recall a result obtained
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by Claudio Teitelboim [32]. In this paper, he shows that if the 3-geometries and �eld con�gurations

de�ned on hypersurfaces are evolved by some hamiltonian with the form

�H =

Z
d3x(N �H +N i �Hi); (53)

and if this evolution can be viewed as the \motion" of a 3-dimensional cut in a 4-dimensional spacetime

(the 3-geometries can be embedded in a four-geometry), then the constraints �H � 0 and �Hi � 0 must

satisfy the following algebra

f �H(x); �H(x0)g = ��[ �Hi(x)@i�
3(x0; x)� �Hi(x0)@i�

3(x0; x)] (54)

f �Hi(x); �H(x
0)g = �H(x)@i�

3(x; x0) (55)

f �Hi(x); �Hj(x
0)g = �Hi(x)@j�

3(x; x0) � �Hj(x
0)@i�

3(x; x0) (56)

The constant � in (54) can be �1 depending if the four-geometry in which the 3-geometries are embedded

is euclidean (� = 1) or hyperbolic (� = �1). These are the conditions for the existence of spacetime.

The above algebra is the same as the algebra (24) of GR if we choose � = �1. But the hamiltonian

(40) is di�erent from the hamiltonian of GR only by the presence of the quantum potential term Q in

HQ. The Poisson bracket fHi(x);Hj(x
0)g satis�es Eq. (56) because the Hi of HQ de�ned in Eq. (40)

is the same as in GR. Also fHi(x);HQ(x0)g satis�es Eq. (55) because Hi is the generator of spatial

coordinate tranformations, and as HQ is a scalar density of weight one (remember that Q must be a

scalar density of weight one), then it must satis�es this Poisson bracket relation with Hi. What remains

to be veri�ed is if the Poisson bracket fHQ(x);HQ(x0)g closes as in Eq. (54). We now recall the result

of Ref. [21]. There it is shown that a general super-hamiltonian �H which satis�es Eq. (54), is a scalar

density of weight one, whose geometrical degrees of freedom are given only by the three-metric hij and

its canonical momentum, and contains only even powers and no non-local term in the momenta (together

with the other requirements, these last two conditions are also satis�ed by HQ because it is quadratic in

the momenta and the quantum potential does not contain any non-local term on the momenta), then �H

must have the following form:

�H = �Gijkl�
ij�kl +

1

2
h�1=2�2� + VG; (57)

where

VG � ��h1=2
�
���1(R(3) � 2��) +

1

2
hij@i�@j�+ �U (�)

�
: (58)

With this result we can now establish three possible scenarios for the Bohm-de Broglie quantum ge-

ometrodynamics, depending on the form of the quantum potential:

1) Quantum geometrodynamics evolution forms a four-geometry
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In this case, the Poisson bracket fHQ(x);HQ(x0)g must satisfy Eq. (54). Then Q must be such that

V + Q = VG with V given by (29) yielding:

Q = �h1=2
�
(�+ 1)

�
� ��1R(3) +

1

2
hij@i�@j�

�
+
2

�
(��� + �) + � �U(�) + U (�)

�
: (59)

Then we have two possibilities:

a) The spacetime is hyperbolic (� = �1)

In this case Q is

Q = �h1=2
�
2

�
(��� + �)� �U (�) + U (�)

�
: (60)

Hence Q is like a classical potential. Its e�ect is to renormalize the cosmological constant and the

classical scalar �eld potential, nothing more. The quantum geometrodynamics is indistinguishable from

the classical one. It is not necessary to require the classical limit Q = 0 because VG = V + Q already

may describe the classical universe we live in.

b) The spacetime is euclidean (� = 1)

In this case Q is

Q = �h1=2
�
2

�
� ��1R(3) +

1

2
hij@i�@j�

�
+
2

�
(�� + �) + �U (�) + U (�)

�
: (61)

Now Q not only renormalize the cosmological constant and the classical scalar �eld potential but also

change the signature of spacetime. The total potential VG = V + Q may describe some era of the early

universe when it had euclidean signature, but not the present era, when it is hyperbolic. The transition

between these two phases must happen in a hypersurface where Q = 0, which is the classical limit.

We can conclude from these considerations that if a quantum spacetime exists with di�erent features

from the classical observed one, then it must be euclidean. In other words, the sole relevant quantum e�ect

which maintains the non-degenerate nature of the four-geometry of spacetime is its change of signature

to a euclidean one. The other quantum e�ects are either irrelevant or break completely the spacetime

structure. This result points in the direction of Ref. [33].

2) Quantumgeometrodynamics evolution is consistentbut does not form a four-geometry

In this case, the Poisson bracket fHQ(x);HQ(x
0)g does not satisfy Eq. (54) but is weakly zero in

some other way. Let us examine some examples.

a) Real solutions of the Wheeler-DeWitt equation.

For real solutions of the Wheeler-DeWitt equation, which is a real equation, the phase S is null.

Then, from Eq. (32), we can see that Q = �V . Hence, the quantum super-hamiltonian (41) will contain

only the kinetic term, yielding

fHQ(x);HQ(x
0)g = 0: (62)

This is a strong equality. This case is connected with the strong gravity limit of GR [34, 35, 36]. If we

take the limit of big gravitational constant G (or small speed of light c, where we arrive at the Carroll
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group [26]), then the potential in the super-hamiltonian constraint of GR can be neglected and we arrive

at a super-hamiltonian containing only the kinetic term. The Bohm-de Broglie interpretation is telling

us that any real solution of the Wheeler-DeWitt equation yields a quantum geometrodynamics satisfying

precisely this strong gravity limit. The classical limit Q = 0 in this case implies also that V = 0. It

should be interesting to investigate further the structure we obtain here.

b) Non-local quantum potentials.

Any non-local quantum potential breaks spacetime but there are some that may still be consistent.

As an example take a quantum potential of the form

Q = 
V; (63)

where 
 is a function of the functional S (here comes the non-locality). In the appendix, we exhibit a

wave functional solution of a midisuperspace model which yields this type of quantum potential. Let us

now calculate fHQ(x);HQ(x0)g:

fHQ(x);HQ(x
0)g = fH(x) + Q(x);H(x0) + Q(x0)g

= fH(x);H(x0)g+ fT (x); Q(x0)g + fQ(x); T (x0)g

where T is the kinetic term of the quantum super-hamiltonian. Developing the last two terms we get

fHQ(x);HQ(x
0)g = fH(x);H(x0)g+ 
fH(x);H(x0)g

�
d


dS
V (x0)

�
2�Gklij(x)�

ij(x)
�S

�hkl(x)
+ h�

1

2��(x)
�S

��(x)

�

+
d


dS
V (x)

�
2�Gklij(x

0)�ij(x0)
�S

�hkl(x0)
+ h�

1

2��(x
0)

�S

��(x0)

�
= (1 + 
)fH(x);H(x0)g

�
d


dS
V (x0)

�
2HQ(x)� 2�Gklij(x)�

ij(x)

�
�kl(x)�

�S

�hkl(x)

�

�h�
1

2��(x)

�
��(x)�

�S

��(x)

��

+
d


dS
V (x)

�
2HQ(x

0)� 2�Gklij(x
0)�ij(x0)

�
�kl(x0)�

�S

�hkl(x0)

�

�h�
1

2��(x
0)

�
��(x

0)�
�S

��(x0)

��
(64)

Using the algebra (24) and the de�nitions (42) and (43) we have:

fHQ(x);HQ(x
0)g = (1 + 
)[Hi(x)@i�

3(x; x0)�Hi(x0)@i�
3(x0; x)]

�
d


dS
V (x0)[2HQ(x) � 2�Gklij(x)�

ij(x)�kl(x)� h�
1

2��(x)��(x)]

+
d


dS
V (x)[2HQ(x

0) � 2�Gklij(x
0)�ij(x0)�kl(x0)� h�

1

2��(x
0)��(x

0)]

� 0 (65)
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The rhs in the last expression is weakly zero because it is a combination of the constraints and the

guidance relations (42) and (43). Note that it was very important to use the guidance relations to close

the algebra. It means that the hamiltonian evolution with the quantum potential (63) is consistent only

when restricted to the bohmian trajectories. For other trajectories, it is inconsitent. Concluding, when

restricted to the bohmian trajectories, an algebra which does not close in general may close, as shown

in the above example. This is an important remark on the Bohm-de Broglie interpretation of canonical

quantum cosmology, which sometimes is not noticed4.

In the examples above, we have explicitly obtained the "structure constants" of the algebra that

caracterizes the \pre-four-geometry" generated by HQ i.e., the foam-like structure pointed long time ago

in early works of J. A. Wheeler [30, 37].

3) Quantum geometrodynamical evolution is inconsistent

In this case, the Poisson bracket fHQ(x);HQ(x0)g is not even weakly zero. The quantum geometro-

dynamics is inconsistent. Note that it may be inconsistent even if the theory is free of anomalies in the

sense of section 3. As the Bohm-de Broglie interpretation is a more detailed description of quantum

phenomena, its consistency may be more di�cult to achieve. The restriction on the quantum potential

along these lines may yield natural boundary conditions to the Wheeler-DeWitt equation.

5 Conclusion and Discussions

The Bohm-de Broglie interpretation of canonical quantum cosmology yields a quantum geometrodynam-

ical picture where, in general, and always when the quantum potential is non-local, spacetime is broken.

The 3-geometries evolved under the in
uence of a quantum potential do not in general stick together to

form a non-degenerate four-geometry. This is not surprising, as it was antecipated long ago [37]. We

obtained this result taking a minimally coupled scalar �eld as the matter source of gravitation, but it can

be generalized to any matter source with non-derivative couplings with the metric, like Yang-Mills �elds.

What is nice with the Bohm-de Broglie approach is that we can investigate further what kind of structure

is formed, by means of the Poisson bracket relation (54), and the guidance relations (38) and (39). By

assuming the existence of 3-geometries, �eld con�gurations, and their momenta, independently on any

observations, the Bohm-de Broglie interpretation allows us to use classical tools, like the hamiltonian

formalism, to understand the structure of quantum geometry. If this information is useful, we do not

know. Already in the two-slit experiment in non-relativistic quantum mechanics, the Bohm-de Broglie

interpretation allows us to say from which slit the particle has passed through: if it arrive at the upper

half of the screen it must have come from the upper slit, and vice-versa. Such information we do not

4One could ask if the guidance relations could not help to close general algebras as in Eq. (54). If this

were true, then we could have more general quantum potentials than the ones given in Eq. (59) which

would not break spacetime. However, it can be easily checked that this is not possible.
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have in the many worlds interpretation. However, this information is useless: we can neither check it

nor use it in other experiments. In canonical quantum cosmology the situation may be the same. The

Bohm-de Broglie interpretation yields a lot of information about quantum geometrodynamics which we

cannot obtain from the many worlds interpretation, but this information may be useless. However, we

cannot answer this question precisely if we do not investigate further, and the tools are at our disposal.

Furthermore, as the Bohm-de Broglie interpretation is a more detailed description of quantum phenom-

ena, consistency requirements may be more di�cult to achieve. As shown in the last section, we can have

inconsistent quantum geometrodynamical evolution, even for an anomaly free quantum theory. This is

a nice feature of the Bohm-de Broglie interpretation because boundary conditions can then be naturally

imposed on solutions of the Wheeler-DeWitt equation. Such boundary conditions would be absent in

other interpretations. Also, if we want to be more strict, and impose that quantum geometrodynamics

does not break spacetime, then we will have much more stringent boundary conditions. As shown in the

previous section, a four-geometry can be attained only if the quantum potential have the the speci�c

form (59). This is a severe restriction on the solutions of the Wheeler-DeWitt equation 5. In this case,

the sole relevant quantum e�ect will be a change of signature of spacetime, something pointing towards

Hawking's ideas. Our answer to the question in the title is, then, in the a�rmative.

In the case of consistent quantum geometrodynamical evolution but with no four-geometry, we have

shown that any real solution of the Wheeler-DeWitt equation yields a structure which is the idealization

of the strong gravity limit of GR. This type of geometry, which is generate, has already been studied [36].

Due to the generality of this picture (it is valid for any real solution of the Wheeler-DeWitt equation,

which is a real equation), it deserves further attention. It may well be that these generate 4-metrics were

the correct quantum gemetrodynamical description of the young universe. It would be also interesting to

investigate if these structures have a classical limit yielding the usual four-geometry of classical cosmology.

For non-local quantum potentials, we have shown that aparently inconsistent quantum evolutions are

in fact consistent if restricted to the bohmian trajectories satisfying the guidance relations (35) and (36).

This is a point which is sometimes not taken into account.

Finally, it should be interesting to investigate the connection between the classical limit and the

conditions for in
ation and/or homogeneity and isotropy of the universe. For instance, neglecting the

scalar �eld, the classical limit of the examples (1-b,2-a,2-b) in the previous section implies that the initial

classical hypersurface must have a constant scalar curvature, which is closer to a maximally symmetric

initial hypersurface.

We would like to remark that all these results were obtained without assuming any particular factor

5These restrictions on the form of the quantum potential do not occur in minisuperspace models

[16] because there the hypersurfaces are restricted to be homogeneous. The only freedom we have is in

the time parametrization of the homogeneous hypersurfaces which folliate spacetime. There is a single

constraint, which of course always commute with itself irrespective of the quantum potential.
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ordering and regularization of the Wheeler-DeWitt equation. Also, we did not use any probabilistic

interpretation of the solutions of the Wheeler-DeWitt equation. Hence, it is a quite general result.

However, we would like to make some comments about the probability issue in quantum cosmology. The

Wheeler-DeWitt equation when applied to a closed universe does not yield a probabilistic interpretation

for their solutions because of its hyperbolic nature. However, it has been suggested many times [17, 38,

39, 40, 41] that at the semiclassical level we can construct a probability measure with the solutions of

the Wheeler-DeWitt equation. Hence, for interpretations where probabilities are essential, the problem

of �nding a Hilbert space for the solutions of the Wheeler-DeWitt equation becomes crucial if someone

wants to get some information above the semiclassical level. Of course, probabilities are also useful in

the Bohm-de Broglie interpretation. When we integrate the guidance relations (38) and (39), the initial

conditions are arbitrary, and it should be nice to have some probability distribution on them. However,

as we have seen along this paper, we can extract a lot of information from the full quantum gravity

level using the Bohm-de Broglie interpretation, without appealing to any probabilistic notion. In this

interpretation, probabilities are not essential. Furthermore, as discussed above, this interpretation may

impose severe boundary conditions from which we could extract the important results. Hence, we can

take the Wheeler-DeWitt equation as it is, without imposing any probabilistic interpretation at the most

fundamental level, but still obtaining information using the Bohm-de Broglie interpretation, and then

recover probabilities when we reach the semiclassical level.

It would also be important to investigate the Bohm-de Broglie interpretation for other quantum

gravitational systems, like black holes. Attempts in this direction have been made, but within spherical

symmetry in empty space [42], where we have only a �nite number of degrees of freedom. It should

be interesting to investigate more general models. These cases are, however, qualitatively di�erent from

quantum closed cosmological models. There is no problem in thinking of observers outside an ensemble of

black holes. It is quantum mechanics of an open system, with less conceptual problems of interpretation.

The conclusions of this paper are of course limited by many strong assumptions we have tacitly

made, as supposing that a continuous three-geometry exists at the quantum level (quantum e�ects could

also destroy it), or the validity of quantization of standard GR, forgetting other developments like string

theory. However, even if this approach is not the apropriate one, it is nice to see how far we can go

with the Bohm-de Broglie interpretation, even in such incomplete stage of canonical quantum gravity.

It seems that the Bohm-de Broglie interpretation may at least be regarded as a nice \gauge" [43] to be

used in quantum cosmology, as, probably, it will prove harder, or even impossible, to reach the detailed

conclusions of this paper using other interpretations. However, if the �ner view of the Bohm-de Broglie

interpretation of quantum cosmology can yield useful information in the form of observational e�ects,

then we will have means to decide between interpretations, something that will be very important not

only for quantum cosmology, but for quantum theory itself.
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Appendix: A Non-local Quantum Potential in the Bohm-de Broglie Interpretation of a

Quantum Spherical Spacetime

We present here an example where a quantum potential of the type (2-b) is obtained. It is an

spherically symmetric midisuperspace model with an electromagnetic �eld. A factor-ordering is proposed

just to yield an exact solution of the Wheeler-DeWitt equation, which is not regularized6.

We start from the ADM decomposition of the general spherically symmetric electrovacuum spacetime

metric on the manifold R�R� S2:

ds2 = �N2dt2 + �2(dr + N rdt)2 + R2d
2 (66)

where N , N r are the lapse and shift functions respectively (both dependent on r and t), and d
 denotes

the standard line element on S2. The electromagnetic potential is taken to be described by the spherically

symmetric one-form:

dA = �(r; t)dr+�(r; t)dt (67)

The ADM action in midisuperspace, after integrating over the two sphere, reads (c � 1)

S =

Z
dt

Z
dr

1

2N

�
1

G

�
N2�� � _R2 + 2

N2R�0R0

�2
� 2

N2RR00

�
�

�(N r)2R02 + 2N r _R(�R)0 � 2RN rR0(�N r)0 + 2R�(N r)0 _R

+2RN r _�R0 � 2R _� _R� N2R
02

�

�
+
R2

�
( _�� �0)2

�
; (68)

where a prime denotes a derivative in r. Varying the action with respect to N and N r leads to the

super-hamiltonian and the super-momentum constraints [44, 45]

H �
G

2

�P 2
�

R2
�G

P�PR
R

+
Vg
G

+
�P 2

�

2R2
� 0; (69)

and

6In fact, the model studied here can be reduced to a minisuperspace model, with a �nite number of

degrees of freedom [44]. However, our goal with this appendix is just to argue that quantum potentials of

the type (2-b) are not so di�cult to appear in canonical quantum gravity. They may be obtained already

from spherically symmetric Wheeler-DeWitt equations, as we will see.
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Hr � PRR
0 � �P 0� � 0; (70)

where

Vg
G

=
RR00

�
�
RR0�0

�2
+
R02

2�
�

�

2
(71)

Varying the action with respect to the Lagrange multiplier � leads to

P 0� � 0: (72)

Boundary conditions for all �elds are assumed to hold such that all integrals are well de�ned, and such

that the classical spacetime metric is nondegenerate [45].

We perform the quantization in the standard formal manner. All constraints act on wave functionals

	[�(r); R(r);�(r)]. The electromagnetic constraint (72) is solved [46] by 	 = f(
R
1

1
�dr) [�(r); R(r)],

where f is an arbitrary di�erentiable function.

>From the hamiltonian constraint, we obtain the Wheeler-DeWitt equation with a particular factor

ordering:

�
�
G�h2�

2R2
F
�

��
F�1

�

��
+
G�h2

R
F
�

�R
F�1

�

��
+
Vg
G
�

�h2��2

2R2��2

�
	 = 0 (73)

where

F � R

s�
R0

�

�2

+
2m

R
�
q2

R2
� 1 (74)

Our solution has the form [46]

	 = e
iq

�h

R
1

�1

�dr
 [�(r); R(r)]; (75)

where the gravitational and electromagnetic degrees of freedom are separated, and  satis�es a reduced

Wheeler-DeWitt equation

�
�
G�h2�

2R2
F
�

��
F�1

�

��
+
G�h2

R
F
�

�R
F�1

�

��
+
Vg
G

+
�q2

2R2

�
 = 0: (76)

We are using this particular factor ordering because in this case there is an exact solution known in the

literature [46], which reads

 = exp
iS0
�h
; (77)

where

S0 = G�1
Z 1

�1

dr

�
�F �

1

2
RR0 ln

R0

� + F
R

R0

� � F
R

�
(78)
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It is easy to see that, as the Wheeler-DeWitt equation is real, the complex conjugate of the wave functional

(77) is another exact solution of it. Hence, we have two independent exact solutions of the Wheeler-

DeWitt equation, and because of its linearity, any linear superposition of them will also be a solution

:

 = a exp

�
iS0
�h

�
+ b exp

�
�iS0
�h

�
: (79)

Writing the wave functional in polar form

 = A exp
iS

�h
; (80)

and replacing it in the Wheeler-DeWitt equation (76), we obtain two equations. One of them reads

G�

2R2
(
�S

��
)2 �

G

R

�S

��

�S

�R
+ V + Q = 0; (81)

where V stands for the classical potential

V �
Vg
G

+
�q2

2R2
; (82)

and Q is the quantum potential

Q =
G�h2

AR

�
�

��2A

2R��2
+

�2A

�R��
+

�
�

1

F

�F

�R
+

�

2RF

�F

��

�
�A

��

�
: (83)

For the wave functional (79), the quantum potential (83) reads

Q = 
V; (84)

where V is the classical potential, and the factor 
 is given by


 = �4

��
ab

A2

�2

sin2
�
2S0
�h

�
+
ab

A2
cos

�
2S0
�h

��
: (85)

As the phase functional S is given in terms of S0 by S = �h
2i ln(

 
 � ), where  is a function of S0 only, then


 = 
(S): (86)

Hence we have found a concrete example of a quantum potential of the type studied in (2-b), where the

constraint's algebra close with new \structure constants", breaking the four-geometry of spacetime.
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