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Abstract

In this paper we discuss the propagation of gravitational waves in two theories:

general relativity and NDL. We examine the propagation of the gravitational waves

on a solvable case corresponding to a spherically symmetric static con�guration.

We show that in NDL theory the velocity of gravitational waves is lower than light

velocity, a result that is contrary to the predictions of general relativity. We point

out some consequencies of this result and a possible scenario for its veri�cation.
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1 Introduction

Recently we have exploited some consequences of a �eld theoretical description of gravity
adding a new ingredient: we do not require the extrapolation to the gravitational energy
from the hypothesis of universality of the equivalence principle (EP). This means that
gravity does not couple to itself as all others forms of energy. Although not identical,
this NDL theory of gravity contains many of the ingredients of GR and is competitive
with general relativity, as far as standard post-Newtonian tests and binary quadrupole
emission are concerned (see ref. [1]).

The main lines of NDL approach can be synthesized in the following statements:

� Gravity is described by a symmetric second order tensor '�� that satis�es a non-
linear equation of motion;

� Matter couples to gravity in an universal way. In this interaction, the gravitational
�eld appears only in the combination 
�� + '��, inducing us to de�ne a quantity
g�� = 
�� +'�� . Such tensor g�� acts as an e�ective metric tensor of the spacetime
as seen by matter or energy of any form except gravitational energy;

� The self interaction of the gravitational �eld break the universal modi�cation of the
spacetime geometry.

In this vein, there is a natural and direct way to test such NDL theory by the analysis
of the gravitational waves. We start to undertake such task in this present paper.

We use units of light velocity (c = 1).

2 A Short Review of the NDL Theory of Gravity

2.1 General Features

In a previous paper [1] we have presented a modi�cation of the standard Feynman-Deser
approach of �eld theoretical derivation of Einstein's general relativity, arriving at a com-
petitive gravitational theory . We shown that it is possible to obtain a theory that
incorporates a great part of general relativity and can be interpreted in the standard
geometrical way like GR, as far as the interaction of matter to gravity is concerned. The
most important distinction of the new theory concerns the gravity to gravity interaction.
This theory satis�es all standard tests of gravity and lead to new predictions about the
propagation of gravitational waves. Since there is a large expectation that the detection
of gravitational waves will occur in the near future, the question of which theory describes
nature better will probably be settled soon.

We de�ne a three-index tensor F���, which we will call the gravitational �eld, in
terms of the symmetric standard variable '�� (which will be treated as the potential) to
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describe spin-two �eld, by the expression1

F��� =
1

2
('�[�;�] + F[�
�]�) (1)

where F� is the trace
F� = F���


�� = ';� � '��;�

�� : (2)

From the �eld variables we can construct the invariants:

A � F��� F
���;

B � F�F
�: (3)

The Lagrangian density for the gravitational �eld is taken to be given by:

L =
b2

�

(r
1 � U

b2
� 1

)
; (4)

where b is a constant and U is de�ned by

U � A�B: (5)

The gravitational action is expressed as:

S =

Z
d4x

p�
 L; (6)

where 
 is the determinant of the Minkowskian spacetime metric 
�� written in an arbi-
trary coordinate system. From the Hamilton principle we �nd the following equation of
motion in the absence of material sources:�

LUF
�(��)

�
;�
= 0: (7)

LU represents the derivative of the Lagrangian with respect to the invariant U .
We follow the standard procedure [2, 3] to de�ne an e�ective Riemannian metric tensor

in terms of the potential '��, by the expression

g�� = 
�� + '�� : (8)

This relation has a deep meaning, once for all forms of non-gravitational energy the net
e�ect of the gravitational �eld is felt precisely as if gravity was nothing but a consequence
of changing the metrical properties of the spacetime from the 
atness structure to a
curved one. The de�nition of the associated metric tensor is provided precisely by the
above expression. This means that any material body (including photons) follows along
geodesics as if the metric tensor of spacetime was given by the above expression.

1We are using the anti-symmetrization symbol like [x; y] � xy � yx and the symmetrization symbol
(x; y) � xy + yx. Note that indices are raised and lowered by the background metric 
�� . The covariant
derivative is denoted by a semicomma `;' and it is constructed with this geometry.
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2.2 The Wave Propagation

Let us review brie
y the result set up in [1] for the velocity of the gravitational wave in
NDL theory. We represent by the symbol [J ]� the discontinuity of the function J through
the surface �. Following Hadamard [4] we impose the discontinuity conditions for the
�eld:

[F���]� = 0 (9)

and
[F���;�]� = f���k�; (10)

where k� represents the normal vector to the surface of discontinuity �. The coe�cientes
f��
 has the same symmetries of the �eld F��
. Taking the discontinuity of the equation
of motion (7) we obtain:

f�(��)k� + 2
LUU

LU

(� � �)F �
(��)k� = 0 (11)

in which we de�ned � � F���f
��� and � � F�f

�. After some algebraic manipulations
results:

k�k� [

�� + ��� ] = 0; (12)

in which the quantity ��� is written in terms of the gravitational �eld:

��� � 2
LUU

LU

[F ���F �
(��) � F �F �]: (13)

Note that the discontinuities of the gravitational �elds propagate in a modi�ed geometry,
changing the background geometry 
��, into an e�ective one g��e� ,

g��
e�
� 
�� + ��� (14)

which depends of the distribution of the �eld F��� and also of the dynamics. This fact
shows that such a property stems from the structural form of the Lagrangian. Thus,
in the NDL theory the characteristic surfaces of the gravitational waves propagate on
the null cone of an e�ective geometry. We remark that this geometry is distinct of that
observed by all other forms of energy and matter, which di�ers from the general relativity
predictions. This result gives a possibility to choose between these two theories just by
observations of the gravitational waves. In the next section we will present a synthesis
of the main properties of the solutions of the gravitational �eld in NDL theory. Then we
will evaluate the velocity of the gravitational wave in such background and compare with
the GR result.

2.3 The Static Spherically Symmetric Solution

We set for the auxiliary metric2 of the background the form

ds2 = dt2 � dr2 � r2(d�2 + sin2 �d'2) (15)

2We note that this metric is non-observable by any form of energy.
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This means that all operations of raising and lowering indices are made by this Minkowski
metric 
�� . We remark the fact that matter3 feels a modi�ed geometry given by Eq. (8).

The static spherically symmetric solution of NDL theory has only two non-null gravi-
tational components of '�� :

'00 = '00 = �(r) (16)

'11 = '11 = ��(r): (17)

Consequently the gravitational �eld F��� reduces to the non-null quantities:

F100 = ��

r
(18)

F122 =
F133

sin2 �
=

1

2
�r � 1

2
�0r2 (19)

(20)

in which a prime 0 symbolizes the derivative with respect to the radial variable r. The
unique component of the trace that remains is F1,

F1 = �
0 � 2

�

r
: (21)

From these we can evaluate the invariant U :

U =
�2

r2
� 2��0

r
: (22)

From the equations of motion (7) and under the hypothesis of symmetry of the solution
we obtain

� =
2M

r

n
1 � (

rc
r
)4
o
�

1

2

(23)

� =
1

2

p
bM

n
F (�;

p
2=2) + �0

o
(24)

in which the constant rc appearing in Eq. (23) is given by

rc
2 � 2M

b
: (25)

In Eq. (24) F (�;
p
2=2) is the elliptic function and the constant �0 must be chosen to

yield the correct assymptotic limit. The quantity � is given by

� � arcsin

�
1 �

�rc
r

�2
� 1

2

: (26)

3Massive or massless particles | photons, for instance | that is, any form of non-gravitational energy
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3 Electromagnetic and Gravitational Waves in the

Spherically Symmetric Solution

From what we have seen, in the NDL theory all kind of matter and non-gravitational en-
ergy couple to gravity di�erently than gravity to gravity interaction. In order to compare
the propagation of electromagnetic and gravitational waves we will proceed as follows.

The metric that de�nes the structure of the spacetime in which the discontinuities of
the electromagnetic �eld propagate, is provided by Eq. (8). We de�ne a 4-vector l� such
that

l�l�g
�� = 0 (27)

where g�� is the inverse of the metric g�� , de�ned by

g��g�� = ���: (28)

Analogous to the section (2.2), this 4-vector is a gradient of the hypersurface of discon-
tinuities. The background gravitational �eld we are considering here, corresponds to a
spherically symmetric and static con�guration. Thus, the relation (27) reduces in this
case to

(l0)
2

1 + �
� (l1)

2

1 + �
� (l2)

2

r2
� (l3)

2

r2 sin2 �
= 0: (29)

Gravitational waves propagate as null geodesic in an e�ective geometry g��e� given by Eq.
(14). The quantity ��� is de�ned by Eq. (13) and have only two non null components:

�00 = �4M2

b2r4
(30)

�11 = ��00: (31)

Correspondingly, the e�ective metric is provided by

g00
e�

= 1 � 4M2

b2r4
(32)

g11
e�

= �1 + 4M2

b2r4
(33)

g22
e�

= � 1

r2
(34)

g33
e�

= � 1

r2 sin2 �
(35)

Inserting these results in Eq. (12) the equation of propagation of gravitational waves
became: �

1� 4M2

b2r4

�
(k0)

2 �
�
1� 4M2

b2r4

�
(k1)

2 � (k2)
2

r2
� (k3)

2

r2 sin2 �
= 0: (36)

We can summarize this situation as:

� Electromagnetic waves propagate in null cone of the geometry g�� ;
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� Gravitational waves propagate in null cone of the geometry ge��� .

A question then appears: Which wave propagates faster? In order to investigate this
problem we can run by two equivalent ways: one can either evaluate the norm of the
vector l� in the geometry ge��� :

l�l�g
��
e�

(37)

or else evaluate the norm of the vector k� in the geometry g�� :

k�k�g
�� : (38)

In this vein we evaluate the quantity (37) and investigate the character of l� in the
geometry g��e� . For the solution we are considering here, results:

jjljjge� =
�
1� 4M2

b2r4

�
(l0)

2 �
�
1� 4M2

b2r4

�
(l1)

2 � (l2)
2

r2
� (l3)

2

r2 sin2 �
(39)

Substituting expression (29) in the last two terms in the right hand side of the above
equation, we obtain

jjljjge� =
�
1 � 4M2

b2r4
� 1

1 + �

�
(l0)

2 �
�
1 � 4M2

b2r4
� 1

1 + �

�
(l1)

2 : (40)

The solutions of the functions � and � are given by (24) and (23). Since we are interested
here just on the sign of the norm of the 4-vector l� in the geometry determined by ge��� , it
is enough to consider only the main terms. Thus, expanding the �eld solutions as:

1

1 + �
� 1 +

2M

r
+O

�
r�2

�
(41)

1

1 + �
� 1 � 2M

r
+ O

�
r�2

�
; (42)

and substituting in Eq. (40) results:

jjljjge� = �2M

r
(l0)

2 � 2M

r
(l1)

2 : (43)

Hence, jjljjge� < 0. We thus conclude that l� is a space-like vector in the geometry ge��� ,
i.e., in the NDL theory gravitational waves travel with velocity lower than light.

4 Conclusion

The NDL theory forecast that gravitational waves travel slower than light has some in-
teresting consequences. The �rst one is the possibility to exist gravitational Chêrenkov
Radiation, that is the emission of gravitational radiation when a massive particle exceeds
locally the \graviton" speed [5]. Evidently, this phenomenom will put limits to how far
from their sources cosmic rays can be found with ultra high energies, such as the ones
searched by the AUGER Project (E � 1020eV) [6]. How restringent these limits are will
be addressed in future work.



{ 7 { CBPF-NF-077/97

One question naturally stands up: can we obtain observational evidence that gravi-
tational waves travel at speeds below the light velocity in the presence of gravitational
potentials? Very high gravitational potentials can be found in the vicinities of neutron
stars, black holes and supernova cores. However, unless we are talking about very massive
black holes, all these gravitational sources are not su�ciently extended in size to allow
the integration of a large enough di�erence in the arriving times at Earth for photons and
gravitons supposely generated at the same place and instant. On the other hand, black
holes of 106 to 109 solar masses, as it is believed to exist at the center of galaxies such as
M87, M51 and others [7], present much better conditions to delay the gravitational waves
relatively to the electromagnetic waves. After all, the Schwarszchild radius of a 109 solar
mass black hole has the size of two Astronomical Units, a distance that light takes about
1000 seconds to cross if traveling outside the horizon. This may give us enough time for
the potential to act on the gravitational waves, slowing them down for su�cient time, in
order to accumulate a time delay possible to be measured with the technology of the next
generations of gravitational wave observatories and electromagnetic telescopes in the few
decades to come.
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