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Abstract

A magnetic plane, exchange coupled to an electron gas, generates besides

the spin polarization also a charge distribution. The corresponding electro-

static energy per unit surface is evaluated. For an electron gas at metallic

densities this is negligible, while it must be taken into account in dilute

degenerate semiconductors.
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In the Ruderman-Kittel theory [1] the spin polarization is linear in the coupling con-

stant of the exchange interaction between magnetic ions and the spins of conduction

electrons. The changes in the charge densities of the upspin electrons are then exactly

compensated by those of the downspin electrons. In the non-linear theory [2,3], however,

this compensation is incomplete. The theory is exact for a Hamiltonian which does not

contain Coulomb energies. A more realistic model should include such terms. The present

paper contains an estimate of the Coulomb energies.

Since charge densities already exist with one magnetic plane [3], let us consider this

case. The charge density per unit surface is given by Eq. (16) of Ref. [3], which using

Eqs. (8) and (12) of Ref. [3] results in
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where the �rst term is due to the localized band and the second due to conduction electron

states. e is the charge of an electron, z the distance from the plane, kF the Fermi wave

number and l0 = �h2=(�m) the range of the localized states, which is reciprocal to the

exchange coupling constant �, m being the mass of an electron. Eq. (1) corresponds to a

net charge per unit surface of
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This increase of the integrated electron density is made possible by the use of the grand

canonical potential, which keeps the chemical potential �xed. Note that in vacuum an

in�nite plane with a net charge per unit surface produces an in�nite electrostatic energy

per unit surface, corresponding to the fact that the lines of force which are perpendicular

to the surface extend to in�nity. In a metal, however, the charges are screened [4]. The

interaction between two charges separated by a distance r takes the form e2 e�kcr=r, where

kc is the screening parameter. Since the charge density has planar symmetry and is an

even function of the coordinate z, the interaction energy per unit surface becomes



CBPF-NF-077/95 2

Ec =
1
2

R1
�1 dz

R1
�1 dz0 2�

R1
0 � d�Q(z)Q(z0) e

�kc

p
�2+(z�z0)2p

�2+(z�z0)2 (3)

= �

kc

R1
0 dz

R1
0 dtQ(z)Q(z + t) e�kct: (4)

Ec is a positive quantity [5].

In this paper we evaluate Ec using the density of Eq. (1) obtained with a Hamiltonian

without charge interactions. This corresponds to lowest order perturbation theory and

indicates the range of exchange couplings for which charge e�ects can be neglected. In-

serting Q(z) of Eq. (1) into Eq. (4) gives three kinds of terms: bound charges interacting

with bound charges, free-free couplings and cross terms. The corresponding integrals can

be done analytically. The weak coupling expansion of each of these contributions contains

terms of order l�10 and l�30 , which, however, cancel so that Ec is of order l
�4
0 . This shows

that the bound states have to be included even in the weak coupling limit, since otherwise

terms of order l�10 would dominate the whole calculation. The closed result is
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In the weak coupling limit, l0kF !1, this becomes
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This di�ers by about 1 % from Eq. (5) for l0kF = 1:5.

The Coulomb selfenergy Ec is to be compared with the magnitude of the grand po-

tential of the magnetic plane per unit surface, j�j, Eq. (29) of Ref. [3]. Table I shows

this ratio for several electron densities n and e�ective masses m�, so that situations of

metals and of degenerate semiconductors are covered. For the exchange coupling constant

the value � = 0:3 eV�A was assumed. The screening parameter suggested by Pines [4],

kc = 0:353
p
rskF , was adopted with (4�=3)(rsaB)3 = 1=n, aB = �h2=(e2m�) being the
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Bohr radius. Table I also lists the values of �0=EF , where �0 = �2m�=�h2 = �2E0 with E0

the lowest energy of the localized band [3]. It is seen that the region where the electro-

static energy dominates, Ec=j�j > 1, is contained within the domain of strong coupling:

�0=EF > 1. When Ec > j�j, however, our estimate of Ec which corresponds to a Born ap-

proximation is not reliable. At metallic densities the electrostatic energy is negligible. In

multilayer con�gurations each plane carries a charge density of the same (negative) sign.

Since there is no compensation, the domain where electrostatic energies can be neglected,

should be similar to that of one plane.
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TABLES

n m � =m Ec=j�j �0=EF

1015 0.1 1.6 100 3.2 100

1015 0.3 5.5 100 2.9 101

1015 1.0 1.4 101 3.2 102

1017 0.1 8.3 10�2 1.5 10�1

1017 0.3 7.7 10�1 1.4 100

1017 1.0 4.0 100 1.5 101

1019 0.1 2.4 10�3 7.0 10�3

1019 0.3 3.1 10�2 6.3 10�2

1019 1.0 4.1 10�1 7.0 10�1

1021 0.1 5.8 10�5 3.2 10�4

1021 0.3 8.4 10�4 2.9 10�3

1021 1.0 1.5 10�2 3.2 10�2

1023 0.1 7.6 10�7 1.5 10�5

1023 0.3 2.0 10�5 1.4 10�4

1023 1.0 3.8 10�4 1.5 10�3

TABLE I. Ratio of screened electrostatic energy Ec to the magnitude of the exchange inter-

action energy of a magnetic plane j�j for various values of the electron density n and the e�ective

mass m�. The ratio of �0, half the binding energy of the bound state, to the Fermi energy EF

is a measure of the coupling strength.
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