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Abstract

A magnetic plane, exchange coupled to an electron gas, generates besides
the spin polarization also a charge distribution. The corresponding electro-
static energy per unit surface is evaluated. For an electron gas at metallic
densities this is negligible, while it must be taken into account in dilute

degenerate semiconductors.
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In the Ruderman-Kittel theory [1] the spin polarization is linear in the coupling con-
stant of the exchange interaction between magnetic ions and the spins of conduction
electrons. The changes in the charge densities of the upspin electrons are then exactly
compensated by those of the downspin electrons. In the non-linear theory [2,3], however,
this compensation is incomplete. The theory is exact for a Hamiltonian which does not
contain Coulomb energies. A more realistic model should include such terms. The present
paper contains an estimate of the Coulomb energies.

Since charge densities already exist with one magnetic plane [3], let us consider this
case. The charge density per unit surface is given by Eq. (16) of Ref. [3], which using
Eqgs. (8) and (12) of Ref. [3] results in
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where the first term is due to the localized band and the second due to conduction electron
states. e is the charge of an electron, z the distance from the plane, kr the Fermi wave
number and Iy = h*/(#m) the range of the localized states, which is reciprocal to the
exchange coupling constant 3, m being the mass of an electron. Eq. (1) corresponds to a

net charge per unit surface of
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This increase of the integrated electron density is made possible by the use of the grand
canonical potential, which keeps the chemical potential fixed. Note that in vacuum an
infinite plane with a net charge per unit surface produces an infinite electrostatic energy
per unit surface, corresponding to the fact that the lines of force which are perpendicular
to the surface extend to infinity. In a metal, however, the charges are screened [4]. The

2eher [ where

interaction between two charges separated by a distance r takes the form e
k. is the screening parameter. Since the charge density has planar symmetry and is an

even function of the coordinate z, the interaction energy per unit surface becomes
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E. is a positive quantity [5].

In this paper we evaluate F. using the density of Eq. (1) obtained with a Hamiltonian
without charge interactions. This corresponds to lowest order perturbation theory and
indicates the range of exchange couplings for which charge effects can be neglected. In-
serting Q(z) of Eq. (1) into Eq. (4) gives three kinds of terms: bound charges interacting
with bound charges, free-free couplings and cross terms. The corresponding integrals can
be done analytically. The weak coupling expansion of each of these contributions contains
terms of order [;' and I5°, which, however, cancel so that E, is of order I[5*. This shows
that the bound states have to be included even in the weak coupling limit, since otherwise

terms of order [;' would dominate the whole calculation. The closed result is

E. = —327r2l§k:(l§k§—4)2{ — 2ok (3k% + 1)*(12k* — 12) arctan (lokr)

+ 202k%((ke/kp)? + 4)(13k? — 8 — 4I2k7) arctan (2kp [ k. )

+ (Bk% 4 1) (loke — 2) [7 (12K + 1) (lok.(lok. + 2) — 8) — 22k kp(lok. +2)]}.  (5)
In the weak coupling limit, lokr — oo, this becomes

K. = ﬁ{i% [(kc/kp)4 — 16] arctan (2kp /k.)

4872 {5 k5

+ 2 |(he/kp)’ =12 (ko/kp) +127] }. (6)

This differs by about 1 % from Eq. (5) for lokp = 1.5.

The Coulomb selfenergy F. is to be compared with the magnitude of the grand po-
tential of the magnetic plane per unit surface, |£|, Eq. (29) of Ref. [3]. Table I shows
this ratio for several electron densities n and effective masses m*, so that situations of
metals and of degenerate semiconductors are covered. For the exchange coupling constant
the value 3 = 0.3 eV A was assumed. The screening parameter suggested by Pines [4],
k. = 0.353,/r;kp, was adopted with (47/3)(rsap)® = 1/n, ap = ﬁ2/(62m*) being the
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Bohr radius. Table I also lists the values of ¢/ Ep, where ¢ = ﬂZm*/ﬁ2 = —2F, with Fy
the lowest energy of the localized band [3]. It is seen that the region where the electro-
static energy dominates, £./|£| > 1, is contained within the domain of strong coupling:
co/Er > 1. When E,. > ||, however, our estimate of F. which corresponds to a Born ap-
proximation is not reliable. At metallic densities the electrostatic energy is negligible. In
multilayer configurations each plane carries a charge density of the same (negative) sign.
Since there is no compensation, the domain where electrostatic energies can be neglected,

should be similar to that of one plane.
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TABLES
n m* /m E./|] e/ Fr
10t® 0.1 1.6 10° 3.2 10°
1015 0.3 5.5 10° 2.9 10!
10t® 1.0 1.4 10! 3.2 102
107 0.1 8.3 1072 1.5 1071
1017 0.3 7.71071 1.4 10°
107 1.0 4.0 10° 1.5 10!
101? 0.1 2.41073 7.01073
10%? 0.3 3.11072 6.3 1072
1010 1.0 41107t 7.0107!
1021 0.1 5.8 107° 3.2104
102 0.3 8.41074 2.91073
1021 1.0 1.5 1072 3.21072
1023 0.1 7.6 1077 1.5 107°
10% 0.3 2.0 107° 141074
10% 1.0 3.81014 1.5 1073

TABLE 1. Ratio of screened electrostatic energy I, to the magnitude of the exchange inter-
action energy of a magnetic plane |£| for various values of the electron density n and the effective
mass m*. The ratio of ¢, half the binding energy of the bound state, to the Fermi energy Er

is a measure of the coupling strength.
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