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Abstract

We analyze the symplectic structure on the dressing group in the sinh{Gordon model

by calculating explicitly the Poisson bracket of the dressing group elements which create

a generic one soliton solution from the vacuum. Our result is that the bracket between the

dressing group elements does not coincide with the Semenov{Tian{Shansky one. How-

ever, a factor related to the topological charge interpolates between these two brackets.
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1 Introduction

The solitons are particle like solutions of the integrable non{linear equations [1]. They describe elastic
collision of solitary waves. After the interaction, the outgoing waves propagate with the same rapidities
as the ingoing ones but with changed phases. The sine{Gordon theory is an example of an integrable
model both at the classical and at the quantum level. The quantum scattering matrix was constructed
in [2] by using bootstrap methods. It is well known [3] that the quantum sine{Gordon model for certain
values of the coupling constant is a massive integrable perturbation of the minimal conformal models in
two dimensions.

In [4] the dressing group symmetry was proposed as an alternative approach to solve classical
integrable models. It was also argued that the dressing group is a semiclassical limit of the quantum
group symmetry of a quantum integrable model. The action of the dressing group is realized via gauge
transformations which act on the components of the Lax connection. A non{trivial Poisson bracket
known as Semenov{Tian{Shansky bracket was introduced [5] in order to ensure the covariance of the
Poisson brackets on the phase space under the dressing group action. The dressing group together with
the Semenov{Tian{Shansky bracket becomes a Lie{Poisson group.

In [6] the dressing group elements which generate N{solitons from the vacuum in the sinh{Gordon
model and its conformally invariant extension [7] are constructed explicitly. It was also shown that there
is a relation between the dressing group and the vertex operator construction of the soliton solutions
[8], [6].

In the present note we calculate the Poisson bracket fg 
; gg of the dressing group element g which
generates a generic one soliton solution in the sinh{Gordon model from the vacuum. We use the fact
that the phase space of the one solitons is two dimensional [1], [9]. Surprisingly, the Poisson bracket
found by us is not identical to the Semenov{Tian{Shansky expression:[r; g 
 g]. Our main results (3.10)
and (3.11) suggest that the topological charge interpolates between these two symplectic structures.

We outline the content of the paper. Sec. 2 is devoted to the one soliton solutions of the sinh{Gordon
equation and to the construction of the dressing group element which produces the one solitons from
the vacuum. In Sec. 3 we present our calculation of the Poisson bracket of the dressing group element
and compare it with the Semenov{Tian{Shansky bracket. In Sec. 4 we comment our result and outline
the conclusions.

2 The sinh{Gordon equation, the one soliton solu-

tions and the dressin group.

In this chapter we briey review some basic facts concerning the sinh{Gordon model, its one soliton
solutions and the dressing group [1], [6], [4]. We start by recalling the sinh{Gordon equation in two
dimensions

@+@�' = 2m2sh2' @� =
@

@x�

x� = x� t (2.1)

It is clear that it has a vacuum solution ' = 0. The eq. (2.1) is equivalent to the zero{curvature condition
F+� = @+A� � @�A+ + [A+; A�] = 0 of the connection

A� = �@�� +mead�E� (2.2a)

E� = ��1
�
E+ +E�

�
� =

1

2
'H (2.2b)

where E� and H are the generators of the sl(2) Lie algebra

[H;E�] = �2E� [E+; E�] = H
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and � is the spectral parameter. The components of the Lax connection (2.2a) belong to the loop algebra
~sl(2). In the principal gradation the last is generated by the elements E�n = �nE�; n 2 2Z+1 and
Hn = �nH; n 2 2Z. The commutation relations are the following

[Hk; E
�
l ] = �2E�k+l [E

+
k ; E

�
l ] = Hk+l (2.3)

The atness of the connection (2.2a) implies that there exists a solution of the linear system

(@� + A�)T (x
+; x�; �) = 0 (2.4)

which together with the initial condition T (0; 0; �) = 1 is known in the literature as a normalized transport
matrix.

The canonical symplectic structure f@t'(x; t); '(y; t)g = 2�(x� y) can be equivalently written in the
form

fA(x; t) 
; A(y; t)g = [r; A(x; t)
 1 + 1
A(y; t)]�(x � y) (2.5a)

r = �
�2 + �2

�2 � �2
H 
H

� 4
��

�2 � �2

�
E+ 
E� + E� 
 E+

�
(2.5b)

where A = A++A� is the spatial component of the Lax connection; � and � are the spectral parameters
corresponding the left and the right tensor factors respectively.

To introduce the one soliton solution we consider the variable �+(x+; x�) = �+(x) whose dependence
on the light cone variables is dictaded by the relation

�+(x) + �

�+(x)� �
= a expf2m(�x+ +

x�

�
)g

a =
�+ + �

�+ � �
; �+ = �+(0; 0) (2.6)

The sinh{Gordon �eld is expressed in terms of �+ and the soliton rapidity � as follows

e�'(x) = �
�+(x)

�
(2.7)

We shall also need the variable ��(x) related to �+(x) and � by �+(x)��(x) = �2 or equivalently

�+(x) + �

�+(x)� �
= �

��(x) + �

��(x) � �
(2.8)

In order to construct a solution of the linear problem (2.4) one observes that (2.6) is equivalent to

 �(x; �) = �a �(x;��) (2.9)

where

 �(x; �) =
�
��(x) + �

�
e�m(�x++ x

�

�
) (2.10)

It was shown in [10] that the matrix

T = e�(x)
�
 +(x; �)  +(x;��)
 �(x; �) � �(x;��)

�
(2.11)

satis�es the linear system (2.4) with ' being the one soliton solution (2.7). Due to (2.9), the matrix T as
a function on the spectral parameter � is degenerated at the points � = ��. A direct calculation shows
that

det T = 2(�2 � �2) (2.12)
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The normalized transport matrix is T (x; �) = T (x; �) � T �1(0; �).

Starting from (2.11) one can construct algebraically solutions of the dressing problem. First we recall
that the dressing group element which relates the vacuum to an one soliton solution is introduced by
the equation

T (x; �) = g(x; �) � T0(x; �) � g
�1(0; �) (2.13)

where T0(x; �) = expf�m(x+E++x
�E�)g is the vacuum solution transport matrix. The last is expressed

as T0(x; �) = T0(x; �)T
�1
0 (0; �); T0(x; �) has the same form as (2.11) but with � = 0 and  +(x; �) =

 �(x; �) = e�m(�x++ x
�

�
) The element g(x; �) can be easily expressed in terms of the non{normalized

transport matrices T and T0 as follows

g(x; �) = T (x; �) � T �10 (x; �) � S(�) (2.14a)

S(�) =

�
a(�) b(�)
b(�) a(�)

�
(2.14b)

detS(�) =
1

�2 � �2
(2.14c)

a(�) = a(��) b(�) = �b(��) (2.14d)

The form of the x�{independent matrix S(�) (2.14b) is �xed by the requirement that it should commute
with the matrix T0(x; �). The equation (2.14c) guarantees that the dressing group element g(x; �) has a
unit determinat; the condition (2.14d) reects the fact that it is represented in the principal gradation.
Setting a(�) + b(�) = � � � and a(�)� b(�) = ��� � one recovers the solution constructed in [6]

g(x; �) =
e�(x)

2(�� �)

�
�+ �+(x) � + �+(x)
�+ ��(x) � + ��(x)

�
+

+
e�(x)

2(�+ �)

�
� � �+(x) �� + �+(x))
��+ ��(x) � � ��(x)

�
(2.15)

We note that the above expression is not the unique which satis�es the following requirement: the matrix
elements of g(x; �) are meromorphic functions on the Riemann sphere with only simple poles at the points
� = ��. There exist four solutions: a(�) + b(�) = (�)p(� � (�)k�), a(�) � b(�) = (�)p�1(� + (�)k�)
where p; k = 0; 1. These solutions have the following assymptotic behaviour

g(x; �) = (�)pe�(x) +O(��1) �!1

g(x; �) = (�)p+ke��(x) +O(�) �! 0 (2.16)

The solution (2.15) is good since it turns to e� for �!1 and to e�� when �! 0 [4]. More than that
it permits to make a relation with the vertex operators.

3 Derivation of the Poisson brackets of the dressing

group elements and the Semenov{Tian{Shansky

bracket

In this paper we restrict ourselves to calculate the bracket fg 
; gg for (2.15) only. The other choices for
g mentioned above will be analyzed in [11]. We shall use the coordinates �+ and � to parametrize the
phase space of the one solitons. It is clear that

fg(�) 
; g(�)g =

�
@g(�)

@�+


@g(�)

@�
�
@g(�)

@�


@g(�)

@�+

�
f�+ ; �g (3.1)
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We recall that (2.15) contains dependence on the variable �� but the last is a function on �+ and �

according to (2.8). To get an explicit expression for (3.1) we �rst obtain

@g(�)

@�+
g�1(�) = �

1

2�+(�2 � �2)

�
(�2 + �2)H + 2��(E+ � E�)

�
@g(�)

@�
g�1(�) =

�
�2 + �2

2�(�2 � �2)
+

((�+)2 � �2)�2

�+(�2 � �2)2

�
H �

�
��(�2 � (�+)2)

�+(�2 � �2)2
E+ �

�+

�

�
�

�2 � �2
+ 2

���

�(�2 � (��)2)

�
�2 � (��)2

�2 � �2
E� (3.2)

In what follows it will be convenient to introduce the following elements of the loop algebra ~sl(2)

X0(�) = H + 2
��

�2 + �2
(E+ �E�)

X�(�) = H +

�
�

�

��1
E+ �

��
�

��1
E� (3.3)

which are eigenvectors of the adjoint action of the element (2.15)

g(�)X0(�)g
�1(�) = X0(�)

g(�)X�(�)g
�1(�) = e�'X�(�) (3.4)

In terms of (3.3) the derivatives (3.2) are expressed as follows

@g(�)

@�+
g�1(�) = �

�2 + �2

2�+(�2 � �2)
X0(�)

@g(�)

@�
g�1(�) =

�2 + �2

2�(�2 � �2)
X0(�)�

�
�2

(�2 � �2)2
�
(�+ ��)X+(�) � (�+ �+)X�(�)

�
(3.5)

Substituing back the above expression into (3.1) we arrive at the expression

fg(�) 
; g(�)g � g�1(�) 
 g�1(�) =

�f�+; �g
�2(�2 + �2)

2�+(�2 � �2)2(�2 � �2)

�
(�+ ��)X+(�)� (�+ �+)X�(�)

�

X0(�) +

+f�+; �g
�2(�2 + �2)

2�+(�2 � �2)(�2 � �2)2
X0(�) 


�
(� + ��)X+(�) � (� + �+)X�(�)

�
(3.6)

In the basis (3.3) the r{matrix (2.5b) reads

r = �2
�2�2(�2 + �2)

(�2 � �2)2(�2 � �2)
(X+(�) +X�(�)) 
X0(�) +

+ 2
�2�2(�2 + �2)

(�2 � �2)(�2 � �2)2
X0(�) 
 (X+(�) +X�(�)) + : : : (3.7)

where we have omited terms X0 
 X0 and X� 
 X� since they do not contribute to the commutator
[r; g 
 g].

Let h(�) be the element (2.15) with �� replaced by the variables ��. We shall keep the rapidity
unchanged: �+�� = �2. Denote by ~' the corresponding sinh{Gordon �eld (2.7). Using (3.3), (3.4) and
(3.7) we immediately obtain

r � h(�) 
 h(�) � r � h�1 
 h�1(�) = (3.8)

�2
��2(�2 + �2)

(�2 � �2)2
�
(�+ ��)X�(�) + (� + �+)X�(�)

�

X0(�) +

+2
��2(�2 + �2)

(�2 � �2)(�2 � �2)2
X0(�) 


�
(� + ��)X+(�) + (�+ �+)X�(�)

�
(3.9)
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Comparing (3.6) with the above expression we conclude that

fg(�) 
; g(�)g � g�1(�) 
 g�1(�) = r � h(�) 
 h(�) � r � h�1(�) 
 h�1(�) (3.10)

provided that

�+ = ��+

f�+; �g = 4��+
�+ � �

�+ + �
(3.11)

The generalization of this result to the case of dressing group elements wich produce solutions with an
arbitrary number of solitons will be done in [12].

4 Remarks and Conclusions

This �nal chapter is devoted to the analysis of our result. First, we recall that the sinh{Gordon model has
a conformally invariant extension [7]. To get the equations of motion of it one imposes the zero{curvature

condition on the connection (2.2a) in the a�ne Lie algebra ŝl(2) with � = 1
2'+�d̂+

1
4!ĉ ; ĉ is the central

element and d̂ = � @
@�

is the derivation which counts the grades of the elements of the algebra. The �elds
� and ! are auxiliary and are introduced in order to restore the conformal invariance. The bracket (2.5a)

remains valid provided that the r{matrix in (2.5b) is changed as follows r ! r̂ = r + ĉ 
 d̂+ d̂ 
 ĉ. In
[6] The N{solitons of this model were studied and it was shown that to get the dressing group elements
which create solitons from the vacuum one has to multiply the corresponding dressing group elements
in the sinh{Gordon model by a factor which is in the center of the a�ne Lie group ŜL(2). A generic
solution can be expressed as

e�2�(�(x)) = ��(x) � ���(x)

��(x) = < �je��(x)T (x)
���(x) = T�1(x)e��(x)j� > (4.1a)

where j� > is a highest weight vector of the a�ne Lie algebra ŝl(2) and < �j is its dual. The action of
the dressing group on (4.1a) is the following [4]

��(x) ! ��(x) � g
�1
� (0)

���(x) ! g+(0) � ���(x) (4.2)

where g+ ( g�) is the expansion of the dressing group element around the point � = 0 (� =1).

In [5], [4] the following brackets on the dressing group

fg� 
; g�g = [r�; g� 
 g�]

fg+ 
; g�g = [r+; g+ 
 g�] (4.3)

are imposed in order to ensure the covariance of the Poisson brackets of (4.1a) under the dressing group

action; in the r. h. s. of (4.3) r� is the expansion of the a�ne analogue of (2.5b) on powers of
�
�
�

��1
.

Going back to our result we �rst observe that in order to extend it to the a�ne case we have only to
add terms which contain the central element ĉ. Therefore, if (4.3) is valid for the a�ne algebra, it has to
be true for the loop algebra calculation also. On the other hand, taking into account (2.15) and (3.11)
we observe that

g(�)h�1(�) = �e��
~� +O(��1) �!1

g(�)h�1(�) = e��
~� +O(�) �! 0
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Since the blocks (4.1a) corresponding to the vacuum are proportional to < �j and j� > respectively we
see that the basic Poisson brackets ( i. e. the brackets between the blocks (4.1a) ) transform covariantly
also under the dressing group action when one assumes (3.10) instead of (4.3).

We shall �nish this section with the following remark: looking at (2.15) as a function of the sinh{
Gordon �eld ' one sees that in order to get the r. h. s. of (3.10) one has only to shift ' by i�. This
makes us to believe that in general the symplectic structure on the dressing group coincides with the
Semenov{Tian{Shansky one (4.3) up to a shift of the sinh{Gordon �eld which is related to the topological
charge.
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