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Abstract

In the framework of QCD at �nite temperature we have obtained dissipative terms for
the e�ective potential between q and �q which would partly explain the J= suppression
in the Quark Gluon Plasma (QGP). The derivation of the dissipative potential for QGP
is presented and the case for Hadron Matter (HM) is brie
y discussed. The suppression
e�ects are estimated based on simple approximations.
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1. Introduction

It was supposed that a suppression of J=	 production in Relativistic Heavy Ion Collisions (RHIC)
could be a clear signal for formation of a new matter phase, e.g. the Quark Gluon Plasma (QGP)
[1], later the phenomenon was observed by the NA38 collaboration [2]. However, it is too early to
celebrate the discovery of QGP, because rigorous studies indicate that in the Hadron Matter (HM)
phase, the suppression phenomenon also exists. Thus many authors study the mechanisms which cause
the suppression of J=	 production in the QGP and HM phases separately [1] [3]. They investigate
how the mass of J=	 shifts with temperature and density of the QGP and HM medium, especially the
dependence of the quark and gluon condensates on temperature and density are introduced to explain
the mass shifts and then the suppression of J=	 production.

The RHIC experiments provide an atmosphere of hot and dense matter state, no matter it is in QGP
or HM phases. The two situations are quite di�erent in many aspects and an important research subject
is to look for one or several clear signals to con�rm or negate formation of QGP. The J=	 suppression is
one of the candidates, but obviously, observation of such suppression is not enough for drawing a de�nite
conclusion, one should investigate the details of the mechanisms which result in the suppression in QGP
and HM. If one starts with a fundamental principle, i.e. QCD, instead of phenomenologically obtained
potentials, he may expect to derive di�erent potential forms for QGP and HM, and it just is the task of
this work.

The e�ective potential between quark-antiquark or quark-quark can be written as

V (r) = �
�eff
r

+ �r: (1)

In the regular zero-temperature theory �eff = 4�s=3 for meson and 2�s=3 for baryon where �s =
g2s=4� and gs is the QCD coupling constant. At �nite temperature, the con�nement constant becomes
temperature-dependent [4],

�(T ) = �(0)[
Tdec � T

Tdec
]��(Tdec � T ); (2)

where Tdec is the decon�nement temperature and � is an uncertain parameter. Above Tdec, the linear
con�nement potential disappears, but it does not mean that the bound state dissolves, because a binding
energy can also be provided by the Coulomb-type potential. By analysis of the medium state, a Debye
screening mechanism is suggested as

V (r) = �
�eff
r

exp(�
r

rD
); (3)

where rD is the Debye screening length. It is a function of temperature [1] and may be obtained by
models. The dissolution condition can be written as

rD � 0:84rB = 1:68=(�effmc):

Seeking for other possible mechanisms which may cause the J=	 suppression, we turn to re-study
the situation. We will start with the QCD theory and its low energy phenomena at �nite temperature
and density.

Let us brie
y retrospect how one derives the Coulomb-type potential from the �eld theory. Consid-
ering a t-channel scattering between two quarks or quark-antiquark, the amplitude in momentum space
is

M = u1(~p1)
�u2(~p2)G
��(k2)u3(~p3)
�u4(~p4); (4)

where G��(k2) is the full gluon propagator and for q� �q interaction u3 and u4 become v3 and v4. There
is also an extra s-channel annihilation diagram for q � �q, where u2 and u3 turn to v2 and v3. Setting
k0 = 0, a Fourier transformation of the amplitude gives rise to the e�ective potential in con�guration
space. Generally speaking, in t�channel the momentum transfer is space-like, i.e. k2 � 0.

It is known that the photon and gluon propagators cannot provide an imaginary part, even at �nite
temperature and density in the common sense. The reason is that an absorptive part of the photon
and gluon propagators corresponds to on-shell photon or gluon (gauge bosons), i.e. k2 = 0, it indeed
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manifests an emission or absorption of a real photon or gluon from the quark (antiquark). At s-channel,
the intermediate gauge bosons have momentum k2 = s = (pq+p�q)2 � 4m2

q > 0, thus the k2 = 0 condition
cannot be satis�ed, unless via loops. Whereas at t-channel the momentum transfer carried by the gauge
boson is k2 = (pq � p0q)

2 � 0, so it seems that an imaginary part can appear. But it is not true, because
only at the boundary point (pq � p0q)

2 = 0, it means that if at both sides of the interaction, the quark is
on its mass shell Eq = E0q and ~pq = ~p0q, i.e. the � = 0 forward scattering. For the Fourier transformation
the integration should be restrained in a momentumconservation allowed region, so for the exact on-shell

situation, the integration region is zero (see below in the context for details), namely
R 0
0 j
~kjf(k) would

result in a null contribution to the absorptive part. By contraries, for the real part of the propagator
which gives rise to the regular potential, k2 = 0 condition is not imposed, so the integration region does
not have any restriction (see below). That is why in the regular theories, photon and gluon propagators
do not contribute an imaginary (absorptive) part, but only a real (dispersive) part.

However, in a bound state under consideration, the situation is di�erent. If the heavy quark or
antiquark (c, �c) is on-shell, it can be described as

p� = mcv�; (5)

where v� is the four-velocity, but in a bound state there is an integration region [5]

p� = mcv� + k�; (6)

where k� is the "residue" momentum, and j~kj � k0 � �QCD. Thus the integration region allowed by
the energy-momentum conservation is no longer zero, but can be from zero to �QCD (or a smaller value
than �QCD). It can indeed contribute an absorptive part which �nally results in a dissipative term in
the e�ective potential. In the next section we will present the details.

Assuming the temperature and density are above Tdec and �dec, the QGP phase is reached. Without
the linear con�nement term whose source is purely non-perturbative and obscure so far, we only need to
take into account the one-gluon-exchange diagram which results in the interaction between quarks and
quark-antiquark. It is well known that at T = 0, the leading term of the one-gluon-exchange contribution
is the familiar Coulomb-type potential ��eff=r, but as the non-perturbative QCD e�ects which are
characterized by the non-vanishing quark and gluon condensates are taken into account, the potential
form is modi�ed and corrections related to 1=mQ (mc or mb) emerge [6][7]. When the temperature
is non-zero and the density is above the regular one, more extra contributions appear. In this work,
ignoring all spin and spin-orbit dependent terms and under some simple approximations, we obtain a
new Coulomb-type potential as

V (r) = �
�eff
r

[1 + i(a+ �sb)]; (7)

where a and b are functions of temperature and density. This new term turns the J=	 charmonium into
a dissipative system and a dissolution is expected.

In the next section, we derive eq.(7) in the framework of QCD at �nite temperature and in Sec.III,
we discuss its signi�cance and the situation for HM phase.

II. Formulation.
In the QGP atmosphere the propagator of fermion at �nite temperature and density in momentum

space can be written as [8]

SF (k) = (/k +m)[
i

k2 �m2
� 2��(k2 �m2)fF (k � u)]; (8)

where

fF (x) =
�(x)

e�(x��) + 1
+

�(�x)

e��(x��) + 1
: (9)

In the expression � = 1=T , u is the four-velocity of the medium, generally u = (1; ~0) in the laboratory
frame, so k � u = k0, � is the chemical potential and is related to the density of the medium. Whereas
the propagator of gluon reads

D��(k) = [
i

k2
+ 2��(k2)fB(k � u)](�g�� +

k�k�
k2

) (10)
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where

fB(k � u) =
1

e�k0 � 1
: (11)

It is noted that we are working in the real-time scheme [9].
As aforementioned, if the charm-quark in J=	 bound state is strictly on mass shell, the t-channel

scattering demands k2 � 0, so that the fermion propagator does not have the temperature-dependent
term because the intermediate fermion of non-zero mass cannot be an on-shell real particle. However,
the soft gluon interaction can make the charm quark deviate from its mass shell, namely the k2 can be
equal to or greater than zero in eq.(6) and it represents an emission or absorption of real photon or gluon,

(k2 = 0 and j~kj � �QCD), moreover a small time-like momentum transfer k2 = m2
q > 0 is also reasonable,

then the intermediate fermion is an on-shell real particle.
Omitting the loop corrections, the lowest order Feynman diagrams are depicted in Fig.1. In general,

the contribution can be decomposed into a form

f(�; T ) = f1(T ) + g2f2(T ) + g2f3(T; �); (12)

where f1(T ); f2(T ) and f3(T; �) are from one gluon exchange, gluon condensate and quark condensate
diagrams respectively shown in Fig. 1. It is noted that only f3 depends on the density of QGP, but not
f1 and f2. Both g

2f2(T ) and g The second term with the ��functions in the propagators correspond to
the on-mass-shell intermediate particle, therefore turns to be a real particle, so it can feel the in
uence
from the surrounding atmosphere, namely the density and temperature.

The traditional way for obtaining the potential is only to deal with the o�-shell part of the propagator,
namely to set k0 = 0 and carry out a three-dimensional Fourier transformation of the two quark scattering
amplitude. All the details including the loop corrections and non-perturbative e�ects are presented in
literatures [6][7] [10][11], instead this work is only focused on the temperature and density-dependent
parts which would contribute additional modi�cation terms to the potential, we denote them as V TG (r)
and V Tq (r) corresponding to Fig.1 (a) and (b) respectively.

From Fig.1 (a), one has

V TG (r) =
1

MJ=	
(
�16�i

3
�s)(�2�)

Z
d4k

(2�)4
�(k2)e�ik�(x�y)

1

e�k0 � 1
; (13)

where the factor (�16�i
3 �s) coming as a common factor due to the color singlet condition of hadrons and

it makes the leading Coulomb term be �4�s
3r as required. It is also noted that here one does not need

to set k0 = 0 as in ref.[10] and the �nal integration region for j~kj is from 0 to �QCD as discussed in
section I. The factor 1

MJ=	
guarantees the dimension of VG(r) right and comparing with the traditional

way for deriving the potential, there is an extra integral over k0, so a factor 1
E � 1

MJ=	
is needed. This

is equivalent to multiply a time factor � (� �E � 1).
Taking the spontaneous requirement x0 = y0 (potential means an instantaneous interaction) a

straightforward calculation gives

V TG (r) =
�16�i

3
�s

1

(2�)2
�

1

rMJ=	

1X
n=1

1

n2�2 + r2
�

[r(1� e�n�� cos�r)� n�e�n�� sin�r]; (14)

where � � �QCD is a parameter and in the expression we deliberately pull out the 1=r factor (see below).
It is a series which absolutely converges for any �nite r and �. If r is not very large (a few tenths of fm
in our case), one only needs to take �rst a few terms for numerical computations. One can notice that
if � � 0, i.e. for quarks are exactly on mass-shell, V TG (r) vanishes and at T ! 0, it is also zero, this
is consistent with our common knowledge. To see its meaning and avoiding tedious calculation, setting
�!1 we approximate eq.(14) to an integral as

1X
n=1

r

n2�2 + r2
�

Z
1

1
dx

r

x2�2 + r2
=

1

�
(
�

2
� arctan

�

r
):
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Thus the V TG (r) is recast as

V TG (r) =
�16�i

3
�s

1

(2�)2
1

�r
(
�

2
� arctan

�

r
):

Below we will evaluate its contribution in terms of the series solution (13).
Similarly, for the quark contribution shown in Fig.1 (b), one has

V Tq (r) =
�32�i

9
�2s
<  q q >T

m3
q

�
1

r
[
1� cos�r

r
�

1X
n=1

(�1)n
1

n2�2 + r2
�

[2r cos�r � (r cos�r + n� sin�r)e�n��(1 + e�r)]; (15)

for � � � and

V Tq (r) =
�32�i

9
�2s
<  q q >T

m3
q

�
1

r
[
1� cos�r

r
�

1X
n=1

(�1)n
e�n��

n2�2 + r2
�

[r(2� (en�� � e�n��) cos �r) + n� sin�r(en�� � e�n��)]: (16)

for � < �, it is obvious that as � ! 0, V Tq (r) vanishes. While deriving eq.(15), we approximate

E =
q
~k2 +m2

q � j~kj in the integral due to the smallness of mq . In the expression <  q q >T is the

quark condensate at �nite temperature T and its signi�cance will be discussed in the next section.

III. Discussions.
The additional potential terms induced by QCD at �nite temperature and density are imaginary and

tend to zero as the temperature and density approach to zero. It makes sense because if there is no hot
and dense atmosphere for the gluon and quarks, the additional terms do not exist at all, so this scenario
would not a�ect the regular lifetime (about 7:5�0:4�10�21 sec.) of the J=	 which mainly is determined
by the s-channel annihilation process of q�q into three gluons. When T is very high (a few hundred MeV)
and �� �0, the damping factor becomes substantial and it is the QGP situation. (see below)

The temperature and density e�ects turn the Hamiltonian of J=	 into complex, and the new Hamil-
tonian describes a dissipative quantum system. Because it is dissipative, the system would dissolve after
a certain time, for example, into DD or DsDs etc. Dissolution to DD or DsDs needs to absorb energies
from atmosphere becauseMJ=	 < 2MD, in QGP case, it is possible, whereas in the vacuum circumstance,
due to the kinematic constraint of the �nal state phase space, even there were a dissipative term, the
dissolution would not occur.

From eqs.(14, 15) one can notice that the coe�cients of i in V TG (r) and V Tq (r) are always negative,
This is a very important point because it makes the system dissipative.

Since V TG (r) and V Tq (r) are very complicated functions of r, it would be extremely di�cult to solve
the Schr�odinger equation with such a potential. Therefore to see the physical signi�cance, we would
choose a simple but reasonable approximation.
(a) Estimation of the dissipation e�ects.

(i) Looking at the additional Hamiltonian, one can note that they can be written as ifq(G)(r)
1
r
where

fq(G)(r) are complicated functions of r and given in eqs.(14, 15). Our approximation is to treat fq(G)(r)
as average values instead of functions of r, namely, we approximate fq(G)(r) as fq(G)(�r) where �r is the
average radius of J=	. Matsui [1] suggests 0:2 � �r

J=	
� 0:5 fm.

(ii) As �(T ) disappears above the decon�nement temperature Tdec, the stationary Schr�odinger equa-
tion becomes

�
1

2mred
r2��

4�s
3r

[1 + i(a + �sb)]� = E� (17)

where � is the wavefunction of J=	, mred is the reduced mass which equals mc=2, and

a =
1

�

1X
n=1

1

n2�2 + �r2
� [�r(1� e�n�� cos ��r) � n�e�n�� sin��r]
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�!1
�!

1

�

1

�
(
�

2
� arctan

�

�r
) (18)

b =
X

q=u;d;s

8

3

<  q q >

m3
q

[
1� cos��r

�r
�

1X
n=1

(�1)n
1

n2�2 + �r2
�

[2�r cos ��r � (�r cos ��r + n� sin��r)e�n��(1 + e��r)]; for � � �; (19)

b0 =
X

q=u;d;s

8

3

<  q q >

m3
q

[
1� cos��r

�r
�

1X
n=1

(�1)n
e�n��

n2�2 + �r2
�

[�r(2� (en�� + e�n��)cos��r) + n� sin��r(en�� � e�n��)] for � < �: (20)

The eigenenergy of eq.(17) is simple and reads

(Ej)eff =
�8mred

9j2
(�s)

2
eff ; (21)

where (�s)eff = �s[1 + i(a � �sb)]. For the ground state j = 1.
(iii) The evolution of the quantum system can be expressed as

�J=	(t) = �J=	(0)e
�iEeff t

= �J=	(0)exp(i
8mred�

2
s

9
[1� (a+ �sb)

2]t) � exp(
�16mred

9
(a+ �sb)�

2
st): (22)

There exists a damping factor. In the calculations, we ignore the temperature dependence of �s [12].
(b) Numerical evaluations.

(i) If the QCD expansion (including the condensates) converges, jb�sj should be smaller than a.
Typically, �s � 0:3 in the potential model, the term �sb can compete with the term a. b is proportional to
the quark condensate at �nite temperature <  q q >T which decreases with the increase of temperature.

However, we will argue in the following that the ratio
< q q>T

m3
q

where mq is the constituent quark mass

is almost independent of temperature.
The constituet quark mass is de�ned as the pole of the quark propagator

�(p2 = m2
q) = mq ; (23)

where �(p2) is the dynamical mass related to quark condensate [16]

�(p2) �
1

p2
<  q q > �s(p

2): (24)

Hence the ratio
< q q>T

m3
q

depends only on �s(m
2
q) which dependence on temperature is ignored. There-

fore, the parameter b is almost temperature independent.
(ii) Thus we have

j�J=	(t)j
2 = j�J=	(T = 0)j2e(

�2t
�0

)
:

A typical time factor is about �0 � 7� 10�22 sec., for 0:2 � �r � 0:5 fm and here we use �r = 0:4 fm. Even
though this numerical value cannot be taken very seriously, the order of magnitude is reasonable.

The size of the collision region is about 10 � 100 fm, a particle produced at the center of the region
needs 1 � 10�22 � 10�21 sec. to travel to the boundary, so �0 is of the same order as the traverse time
and de�nitely results in a suppression of J=	 production (in fact a bulk decay) observed in experiments.

In fact, in such a small time interval, according to the regular theory c and �c hardly combine into a
bound state, so it is equivalent to the e�ective screening.

(iii) It is worth noting that only b depends on the density via the chemical potential �. From eq.(15),
numerical results show that as j�j gets larger the contribution of V Tq (r) becomes more competitive to

V TG (r), but by the common sense, jb�sj < a.
(c) For the hadron matter phase, gluons and quarks do not directly feel the temperature and density of
the hadron medium, therefore the gluon propagator cannot be in
uenced by the medium. In this case the
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temperature and density e�ects can appear in two ways. One is that the quark and gluon condensates are
modi�ed in the medium but di�erent from that in QGP, [15], while another way is via loops in s-channel.

Our results show that the temperature and density e�ects can cause a suppression of J=	 production,
but the mechanism is di�erent from the traditional Debye screening e�ect, i.e. it contributes a dissipative
part to the potential. This additional term makes the quantum system dissolve by a time scale 7� 10�22

sec. This mechanism can only exist in QGP phase but not in the HM phase.
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Figure Caption

Fig.1.The Feynman diagrams of t-channel c� �c scattering where the charm-quark may deviate from
its mass shell a bit.
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