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1 Introduction

The usual derivation of the periodic orbit trace formula for chaotic systems extracts as
stationary phases the actions of isolated periodic orbits while the amplitudes are given
by the contributions of their hyperbolic neighbourhoods. However, when the orbits lie on
discontinuities or at the boundary of classically allowed regions, anomalous contributions
are expected.[1] We analize and calculate the origin of these contributions for the simplest
piecewise{linear map: the baker's transformation.

In spite of many generic properties and its inherent simplicity, the baker's map has
shown some "anomalies", both in the statistical properties of the quasi{energy spectrum[2]
and in the asymptotic behaviour of the lowest traces of the propagator.[3] It is now un-
derstood that these anomalies are related to the discontinuous way in which the map
transforms phase space and to the singular nature of the �xed point:[4] it lies on the
discontinuity and does not have a whole hyperbolic vicinity (in this sense, all the other
periodic points are regular). In Ref. [3] it was shown that, when the map is quantized,
and its semiclassical traces considered in the context of periodic orbit theory, the contri-
butions coming from singular symbols (related to the �xed point and its repetitions) show
anomalous terms with a log �h dependence. Some indications of anomalous behaviour for
regular symbols (related to regular periodic orbits) were also communicated.

Our main result is that not only the singular symbols contribute anomalously to
the trace but every regular symbol also does. We trace these contributions to classical
paths (not periodic orbits) whose action is stationary at the vertices of classically allowed
(hypercube{shaped) domains.

The paper is organized as follows. In Section 2 we briey review the classical and
quantum features of the map that will be relevant for further discussions. Section 3
describes the manipulations on the iterated propagator that lead to an exact symbolic
decomposition of its traces. The exact contribution to the trace from each symbol sequence
results in a path summation formula which, following a procedure suggested in Ref. [5],
is converted by Poisson transformation into a multiple in�nite number of (continuous
variables) path integrals in phase space. This is the starting point for the approximations
to be made.

In Section 4 we analize the di�erent stationary paths that contribute to these integrals
and their charachteristic �h dependence, thus obtaining their asymptotic behaviour. We
arrive at the result that, for each symbol, the asymptotic behaviour is ruled by more
than one path. The periodic orbit (labelled with that symbol) contributes with the usual
Gutzwiller term and a vertex path contributes with a logarithmic term. Some examples of
these anomalous terms are calculated, both analytically and numerically. Further constant
terms arising from other stationary paths are identi�ed but are very hard to calculate.
Section 5 contains the concluding remarks.

2 Review of the classical and quantum baker's map

In this section we display the well known classical and quantum ingredients of the baker's
that will be needed for further analysis.
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The classical baker's transformation is an area preserving, piecewise{linear map of the
unit square (periodic boundary conditions are assumed) de�ned as

p1 =
1

2
(p0 + �0) ; q1 = 2q0 � �0 ; (1)

where �0 = [2q0], the integer part of 2q0. This map is known to be uniformly hyperbolic,
the stability exponent for orbits of period L being L log 2. Moreover it admits a useful
description in terms of a complete symbolic dynamics. A one to one correspondence
between phase space coordinates and binary sequences,

(p; q)$ : : : ��2��1 � �0�1�2 : : : ; �i = 0; 1 ; (2)

can be constructed in such a way that the action of the map is conjugated to a shift map.
The symbols are assigned as follows: �i is set to zero (one) when the i{th iteration of
(p; q) falls to the left (right) of the line q = 1=2, i.e. [2qi] = �i. Reciprocally, given an
itinerary : : : ��2��1 � �0�1�2 : : :, the related phase point is obtained through the especially
simple binary expansions

q =
1X
i=0

�i
2i+1

; p =
1X
i=1

��i
2i

: (3)

Once the dynamics has been mapped to a shift on binary sequences it is very easy to anal-
ize the dynamical features of the map. In particular, periodic points are associated to in�-
nite repetitions of �nite sequences of symbols. It will be convenient for later purposes to in-
troduce a vector notation for these sequences so that � = (�0; �1; : : : ; �L�1)t. We also denote
the positions and momenta of a periodic trajectory of length L as q�=(q�0; q

�
1; : : : ; q

�
L�1)

t

and p�=(p�0; p
�
1; : : : ; p

�
L�1)

t. For a given �, the initial point on the trajectory is obtained
by considering a periodic itinerary of length L in (3)[6]

q�0 =
1

2L � 1

L�1X
i=0

2L�1�i �i ; p�0 =
1

2L � 1

L�1X
i=0

2i �i : (4)

The other points are obtained by shifting cyclically the binaries �i in the expression above.
In a compact form,

q� = A�1
� ; p� = (At)�1 S � : (5)

The matrixA�1 is directly related to the matrix S of a cyclic shift, S � (a0; a1; : : : aL�1)t =
(a1; : : : ; aL�1; a0)t,

A�1 =
1

2L � 1

L�1X
i=0

2L�1�i Si ; (6)

and embodies all the symmetries of the periodic trajectories.[6] Its inverse will play an
important role in the quantum and semiclassical analysis and has the simple form,

A = 2� S : (7)

Due to its piecewise linear nature, the baker's map admits a (mixed) generating function
which is a piecewise quadratic form,

W�0(p1; q0) = 2p1q0 � �0p1 � �0q0 ; �0 = 0; 1 : (8)
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It is not de�ned on the whole space p1{q0 but on the classically allowed domains

R0 = [0; 1=2] � [0; 1=2] and R1 = [1=2; 1]� [1=2; 1] : (9)

Once the generating function is de�ned, actions can be assigned to the periodic orbits.[7]
In our notation they read

S� = �
tA�1

� = (Sp�)tAq� : (10)

With respect to the quantum map, we will follow the original quantization of Balazs
and Voros[8], as later modi�ed in Ref. [6] to preserve in the quantum map all the sym-
metries of its classical counterpart. In the mixed representation the baker's propagator
can be written as an N �N block{matrix (N even):

hpmjBN jqni =
 
GN=2 0
0 GN=2

!
; (11)

where position and momentum eigenvalues run on a discrete mesh with step 1=N = h (h
= Planck's constant), so that

qn = (n+ 1=2)=N ; pm = (m+ 1=2)=N ; 0 � n;m � N � 1 ; (12)

and GN is the antiperiodic Fourier matrix, which transforms from the q to the p basis,

GN = hpmjqni = (1=
p
N )e�2�iNpmqn : (13)

This propagator[7] has the standard structure of quantized linear symplectic maps,

hpmjBjqni =

8>><
>>:

q
2=N e�i2�NW0(pm;qn) if (pm; qn) 2 R0q
2=N e�i2�NW1(pm;qn) if (pm; qn) 2 R1

0 otherwise :

(14)

In this quantization, only those transitions are allowed that respect the rule [2pm] = [2qn],
a reection of the classical shift property.

3 Path integral formulation

The iteration of the propagator in the mixed representation is simply the expansion of a
�nite matrix product, which we write as

hpLjBLjq0i =
XhpLjBjqL�1ihqL�1jpL�1i � � � hp2jBjq1ihq1jp1ihp1jBjq0i ; (15)

where the summation is over repeated phase space coordinates. To simplify notation we
have dropped the subindices labeling the discrete values of the coordinates in (12) in
favor of a subindex labeling the (discrete) time on the trajectory. When (14) is taken into



{ 4 { CBPF-NF-074/96

account the trace of the iterated propagator can be written as a sum over paths of length
L

TrBL =
X


A e
iW=�h ; (16)

where A is the amplitude and W the action of a path  = (q0; p1; q1; p2; � � � ; qL�1; pL)
which satis�es the rule [2qi] = [2pi+1]. By grouping the paths according to their symbolic
itinerary � = (�0; �1; : : : ; �L�1), the trace can be further decomposed as TrBL =

P
� TrB

L
� ,

with

TrBL
� =

2L=2

NL

X
e�2�iN [W�0

(q0;p1)�q1p1+W�1
(q1;p2)�����qL�1pL�1+W�L�1

(qL�1;pL)�q0pL] : (17)

This decomposition breaks up the trace of the propagator into partial sums each one
labeled by a symbolic code. Contrary to the usual semiclassical procedure, this decompo-
sition is now exact. Each symbol, instead of corresponding semiclassically to a Gutzwiller
contribution from a periodic orbit is given by a sum over paths that share a common
symbolic code. The asymptotic evaluation of these sums can now be attempted focusing
on one symbol at a time. Thus from now on we restrict the analysis to the partial trace
TrBL

� , i.e. we take � �xed.
As a function of continuous coordinates, the quadratic phase in (17) has the property

of being stationary over the only periodic trajectory carrying the label � (for N big enough,
a discrete path arbitrarily close to this trajectory can be found, so the stationary phase
picture also holds in the discrete case). A �rst attempt at the semiclassical evaluation
of (17)[7] consisted in replacing the sums by integrals which can then be evaluated in
the stationary phase approximation, neglecting boundary contributions. (Special care
has to be taken of the anomalous contributions of the �xed point and its repetitions:
these trajectories lie on a vertex of the domain of integration, where the approximations
stated before are not applicable.) In the case of regular orbits, i.e. � 6= (0; 0; � � � ; 0) and
� 6= (1; 1; � � � ; 1), this procedure leads to the usual semiclassical expression

TrBL
� �

2L=2

2L � 1
e2�iNS� ; (18)

where S� is the action of the (stationary phase) periodic orbit given in (10). This result,
combined with an ad hoc evaluation of the anomalous �xed points contributions led to
a fairly good reconstruction of the smoothed properties of the spectrum.[7] However, a
more careful semiclassical analysis of the �rst traces[3] revealed the existence of anoma-
lous contributions, typically terms of the order log �h. The presence of these terms was
then interpreted as coming from the singular orbits; nevertheless, certain quantitative
di�erences could not be explained, moreover, anomalous behaviour of a regular orbit was
also suggested.[3]

In this paper we explain the reason for the failure of previous attempts to obtain
asymptotic expressions for the traces which is intimately linked to the discreteness of the
coordinate grid. Another path{not a trajectory{exists that renders the phase stationary.
Small discrete displacements about this path produce a (leading order) variation of the
phase which is an integer multiple of 2�. This is a path of quasi{stationary phase, related
to aliasing; it lies at a vertex of the space of paths, and thus escapes the usual stationary
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phase treatment. This phenomenon occurs for all symbols and therefore all traces are
anomalous in this sense. The correct trace expansion for each symbol should then be
written as

TrBL
� �

2L=2

2L � 1
e2�iNS� + a� logN + b� + : : : ; (19)

where the �rst term will be absent for � = 0 or 1 (a� and b� are complex constants).
In order to clearly display the abovementioned features we follow Ref. [5] and transform

the path summation into integrations via the Poisson formula. Making use of the identity

N
2
�1 (N�1)X
i=0 (N

2
)

F (qi) = N
1X

K=�1
(�1)K

Z 1

2
(1)

0 ( 1
2
)
e2�iNKq F (q) dq ; (20)

where the parenthesis indicate alternative ranges for the summation (integration), we
rewrite (17) as

TrBL
� = 2L=2NL

X
M0

� � � X
ML�1

X
K1

� � �X
KL

(�)M0+:::+ML�1+K1+:::+KL �

�
Z
R�0

dq0dp1

Z
R�1

dq1dp2 � � �
Z
R�L�1

dqL�1dpL e
�2�iN� : (21)

Mi;Ki come from Poisson transforming the variables qi; pi and take all integer values.
The phase � is

� = W�0(q0; p1)� p1q1 �M0q0 �K1p1 +W�1(q1; p2)� p2q2 �M1q1 �K2p2 + � � �
� � �+W�L�1

(qL�1; pL)� pLq0 �ML�1qL�1 �KLpL : (22)

In a more compact form we write

TrBL
� =

X
M;K

(�)M0+:::+ML�1+K1+:::+KLI�;M;K ; (23)

implicitly de�ning the integrals I�;M;K.
This is the starting point of the semiclassical analysis (cf. (17)). Standard stationary

phase is now possible as sums have been replaced by integrals{in an exact way. The di�-
culty now is that we have to deal with an in�nite multiplicity of integrals and therefore it
is essential for further progress to identify among them those that contribute signi�cantly
to the asymptotic behaviour. At this point our treatment diverges from that in Ref. [5]
where a truncation of the Poisson expansion was considered. On one side, the truncation
misses constant terms which come from in�nite families of integrals (Appendix A). On
the other, the truncated set contains integrals which are not relevant in the far asymptotic
regime, as only a few speci�c ones are needed (next section).

4 The semiclassical trace formula

In analizing the traces as given by (23) we follow the criterion that the most important
contributions will come from those multiple integrals having stationary phase paths lying
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in the interior of the domains of integration (or on the boundary). Other cases will be
oscillatory over the whole domain and thus contribute vanishingly.

For compactness we will use the matrix notation introduced earlier. The positions
and momenta of a path of length L will be respectively denoted q=(q0; q1; : : : ; qL�1)t and
p=(p1; : : : ; pL)t. Analogously we de�ne the vectors of integers coming from the Poisson
transformation: M=(M0; : : : ;ML�1)t and K=(K1; : : : ;KL)t. For convenience of notation
notice that here p is shifted with respect to that de�ned in Section 2. All vectors and
matrices will be understood to be L{dimensional.

The quadratic character of the generating function (8) can be used to express the
phase � (22) of a path contributing to the partial trace TrBL

� , and corresponding to
Poisson integers M and K, as

� = ptAq� pt (�+K)� qt (�+M) ; (24)

A and its inverse were de�ned in (6, 7). A stationary phase path (~q; ~p) is then a solution
of the equations rq � = 0, rp � = 0, that is,

~q = A�1 (�+K) ; ~p = (At)�1 (�+M) : (25)

Equivalently, these stationary points could have been identi�ed in the discrete picture
(17) by requiring the quasistationarity of the action W , i.e. rqW = M, rpW = K.
The advantage of having introduced the Poisson's transformation is that it is now clear
how to calculate the contribution of each stationary path. For �xed �, (25) gives one
solution for each choice of K and M. The quadratic form, shifted to this stationary point
becomes

� = (p� ~p)tA (q� ~q)� ~ptA ~q : (26)

The point (~q; ~p) may fall inside, on the vertices or faces, or outside the region of integration
R�0�R�1�: : :�R�L�1

. There are only three kinds of solutions (25) that do not fall outside
the domain of integration:

(R) Interior paths. These paths coincide with the regular periodic trajectories (5) and
are obtained by settingK andM to zero for � 6= 0;1. The corresponding coordinates
are ~q = q� and ~p = Sp�. The stationary value of the phase, ~�, is the classical action
of the trajectory, i.e. ~� = S� (see Section 2).

(V) Vertex paths. By choosing K = (A� 1)� and M = (At � 1)�, we get the solution
~q = �, ~p = �. The corresponding value for the phase, ~� = �

tA �, is an integer, and
so has no relevance in the phase in (21).

(F) There are two face paths. Their coordinates are obtained by mixing regular and
vertex solutions, i.e. (~p; ~q)=(�;q�) or (p�; �).

It must be pointed out that in the case of the singular symbols � = 0;1 there is only one
solution{the vertex one. In Fig. 1 we show as an example the stationary paths for the
case L = 3 and the regular symbol � = (0; 0; 1).

In the �rst case (R), the asymptotic evaluation of the integral is straightforward. The
stationary path coincides with a regular periodic orbit and it is interior to the integration
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domain, therefore boundary terms can be neglected. The quadratic form can be brought
to principal axes and evaluated in a standard way. The result is simply

IR� = 2L=2 e2�iNS�NL �
Z
R�

dp dq e�2�iN (p�~p)tA (q�~q) =

=
2L=2

2L � 1
e2�iNS� + terms decreasing with N ; (27)

the usual Gutzwiller contribution (we have used detA = 2L � 1).
For vertex (V) solutions this procedure is not possible because the neighbourhood of

the path (which only coincides with a periodic trajectory when � = 0;1) is intersected
by the boundaries of the hypercube of integration. The integral to be evaluated can be
brought to the form (using the new coordinates q� � and p� �)

IV� = 2L=2NL �
Z
[0; 1

2
]2L

dp dq e�2�iN pt J�AJ� q : (28)

J� is a diagonal matrix with elements �1, Jii = 1 � 2�i�1 ; 1 � i � L ; and contains the
dependence on the symbol �.

(A comment about the invariant properties of (28) is in order. The original path sum
(17) is cyclically invariant with respect to shifts on the symbol � and also respects all
the symmetries of the map.[3] Once the stationary paths have been identi�ed and their
contributions evaluated it is important to verify that these symmetries are maintained.
In that case, only one representative integral for each symbol and symmetry class needs
calculation. From the expression (28) it is possible to check that this is indeed the case.)

To our knowledge, for L > 2, the leading asymptotic expression for the integral (28)
cannot be evaluated analytically. Appendix B presents the case IV(0;1) as an example of
the di�culties involved in such calculations. The analytical and numerical results for the
shortest symbols indicate that IV� displays the following asymptotic behavior (N!1),

IV� = a� lnN + b� + decreasing terms ; (29)

where a� and b� are (complex) constants. For L = 1; 2 this result is obtained analytically,
for L = 3, numerically.

The simplest example of a vertex integral is that associated to the calculation of the
�rst trace, worked out in the Appendix A. In this case the only stationary path is the
vertex one, there are no interior nor face paths. It is shown that asymptotically the
vertex integrals IV�=(0) and IV�=(1) give account of the logN term, but fail in reproducing
the constant one which is present in TrB�=(0). It is also proven that to obtain the correct
constant an additional in�nite family of Poisson integrals must be considered. These
integrals, which provide a constant term, contain continuous sets of stationary points of
the second kind ,[9] i.e. their phases are stationary with respect to displacements along
the faces of the hypercube of integration. We expect that in the general case (L > 1)
this behaviour will be maintained: the vertex integral will provide the correct logN term,
but the constant b� will only be obtained when an in�nite family of Poisson integrals
is calculated. So, even though constant terms in the trace expansion are detected, its
calculation is very hard and will not be attempted here.
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As to face solutions (F), there is numerical evidence that these integrals will contribute
with a constant.[10] On the basis of the previous discussion, we subordinate their study
to further progress in the identi�cation and handling of the in�nite families of integrals
of the second kind that are also responsible for the constant term.

In Figs. 2 and 3 we show, for the case L = 3, numerical data concerning the asymp-
totic behaviour of the exact traces as calculated by matrix multiplication (17) and the
prediction of our theory, i.e. the associated vertex integrals (29). The representative
traces TrB(0;0;0) and TrB(0;0;1) are plotted as a function of even N (in the second case the
Gutzwiller term has been substracted) together with some values of the vertex integrals
IV(0;0;0) and IV(0;0;1) (much more time demanding than the traces). The straight lines are
obtained by means of linear �ts to the numerical data (in the case of the traces only a
subsequence of points with N > 210 has been taken into account).

These �gures show clearly that the vertex integral captures the correct logN depen-
dence but that the constant is incorrect. This is exactly the same behaviour that is
calculated analytically for the cases L = 1; 2. The high quality of this agreement can
be observed in Table 4, where a quantitative comparison between the asymptotics of
traces and integrals is displayed. There we exhibit the coe�cients a� of the logN terms
as extracted either from linear �ts or analytically (Appendices A and B, Ref. [3]). A
representative member of each symmetry class up to L = 3 is shown.

Notice that the logN dependence does not dissappear in the full traces and therefore
it is not an arti�ce of the symbolic decomposition. For instance for L = 3 we have
TrB3 = 2TrB(0;0;0)+6TrB(0;0;1) and from Table 1 we get TrB3 � (�0:126� i 0:103) logN .

L � a� (exact) a� (theory)

1 (0) (0;�0:2251[1]) �i
p
2

2� � (0;�0:22508)
2 (0; 0) (�0:0234[2];�0:106[1]) � log 2

3�2
� i

3�
� (�0:02341;�0:1061)

2 (1; 0) (�0:0232[2]; 0:0001[2]) � log 2
3�2 � (�0:02341; 0)

3 (0; 0; 0) (�0:0313[3];�0:0609[5]) (�0:0318[3];�0:0607[2])
3 (0; 0; 1) (�0:01055[10]; 0:00350[5]) (�0:01064[1]; 0:00352[3])

Table 1

Anomalous contributions to the trace from each family of paths with a common symbol
�. Displayed are the complex coe�cients a� of the logN terms in the asymptotic expansion
of the three shortest traces. Exact results were obtained by explicit numerical calculation
of the partial traces. "Theory" means the result of evaluating the vertex Poisson integral.
For times 1{2 the integrals are done analytically, for L = 3 numerically. In the numerical
cases, a linear �t has been done to extract the coe�cients (See e.g. Figs. 2, 3). The square
brackets contain the estimated maximum error in the least signi�cative �gure.
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5 Concluding remarks

We have shown that stationary phase paths other than periodic trajectories exist which
signi�cantly contribute to the semiclassical trace formula of the quantum baker's map.
The fact that these paths lie on vertices or faces of the allowed phase space makes their
contribution anomalous: they give rise to log �h and other terms. A theory is presented that
not only explains the origin of those anomalies but is capable of quantitative predictions.
In the case of the three shortest traces, these predictions are compared to the exact results
showing excellent agreement. These results encourage us to conjecture that all partial
traces will display this behaviour. So, the semiclassical trace formula for the baker's map
becomes

TrBL =
X
�

(a� logN + b�) +
X
� 6=0;1

2L=2

2L � 1
e2�iNS� + decreasing terms : (30)

Each coe�cient a� involves the calculation of a multidimensional integral, which, up to
now, must be done numerically. These integrals adopt the simple form of a quadratic
phase which is stationary on the vertex of an hypercube. This seems to be a complicated
task but maybe not unsolvable. The calculation of the constant terms b� in the expansion
is even a more di�cult problem, as it involves the identi�cation and handling of in�nite
families of integrals (dominated by second kind stationary points).

Even though the results presented here have been obtained for a particular quantiza-
tion of the baker's map, we believe that these results are extendible to any quantization
(e.g. the optical baker[11]), as they are a consequence of the unusual nature of the �xed
point of the classical map, which lies on a discontinuity. However, the particular values of
the coe�cients in the trace formula may depend of the particular scheme used to quantize
the map.

The trace formula {without the logN terms{ was tested numerically both for smoothed
spectral properties using the density of states[7] and for individual eigenvalues using zeta-
function techniques.[3] In both cases, for computational reasons, N was restricted to take
relatively small values (e.g. N = 48 in [3], N up to 1024 in [7]). The agreement obtained
was remarkable and can be explained by the fact that for such low values the logN terms
do not play a signi�cant role. It remains the open question, in view of our present results,
if that agreement is truly asymptotic or if it will deteriorate for larger values of N .
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Appendix A

In this appendix we study the asymptotics of the �rst trace of the map. The result has
been obtained in Ref. [3] with an ad hoc procedure to evaluate the sums. Here we show
how to arrive at the same result but using stationary phase considerations in the context of
the Poisson expansion. This example illustrates the fact that the log �h term is associated
to the vertex integral but, in order to reproduce the constant term an in�nite family of
Poisson integrals must be summed.

The starting point is the de�nition of TrB(0), Eq. (21),

TrB(0) =
1X

M0=�1

1X
K1=�1

(�1)M0+K1I(0);M0;K1
; (31)

with

I(0);M0;K1
=

p
2N

1=2Z
0

dp1

1=2Z
0

dq0 e
�2�iN(p1q0�M0q0�K1p1)

=
p
2N

�M0+1=2Z
�M0

dp1

�K1+1=2Z
�K1

dq0 e
�2�iNp1q0 : (32)

A change of variables has been made to transfer the dependencies on M0 and K1 to
the domain of integration. Now the picture is that of an hyperbolic phase, e�2�iNp1q0,
integrated over a domain that is an in�nite union of (disjoint) squares of side 1

2 (see Fig.
4).

We observe that, besides the stationary point in the origin, all those points of the
domain which lie on the axis q0 or p1 are stationary with respect to displacements along
those axes. These are non{isolated stationary points of the second kind and their contri-
bution is non negligible. So we restrict the integration to those squares lying along the
axes (shaded squares in Fig. 4), i.e.

TrB(0) � I(0);0;0+
X

M=�1�2:::
(�1)MI(0);M;0 +

X
K=�1�2:::

(�1)KI(0);0;K ; (33)

or, by virtue of the p{q symmetry I(0);M;K = I(0);K;M,

TrB(0) � I(0);0;0 + 2� X
K=�1;�2;:::

(�1)KI(0);0;K : (34)

This expression can be evaluated explicitly in the regime N !1. We begin by doing a
�rst integration, over q, in (32):

I(0);�M;�K =
ip
2�

Z M+1=2

M

dp

p
f[cos(2�Np(K + 1=2)) � 1]� [cos(2�NpK) � 1]

�i[sin(2�Np(K + 1=2)) � sin(2�NpK)]g : (35)

Each one of the integrals above can be solved explicitly in terms of the functions Ci(z) and
Si(z),

R z
0 dp(cos p�1)=p = Ci(z)��log z, R z0 dp sin p=p = Si(z) ( is Euler's constant).[12]
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A careful consideration of the limitsM ! 0, N !1 leads to

I(0);M=0;K=0 � �i
p
2

2�
logN +

p
2

4
� i

p
2

2�

�
log

�

2
� 

�
(36)

I(0);M=0;�K �
p
2

2�
i log

K

K � 1=2
: (37)

The contributions coming from each square can be added up by making use of the identity
�1n=1(1� 1=(2n)2) = 2=�, [13] so that

X
K=�1;�2;:::

(�1)K log
K

K � 1=2
= log

�

4
: (38)

Replacing into (34) we obtain,

TrB(0) � �i
p
2

2�
logN +

p
2

4
+
i
p
2

2�

�
log

�

8
+ 

�
: (39)

Finally, as TrB(1) = TrB(0), we have TrB = 2TrB(0), the result in [3].
The di�culty in the computation of the constant term in general is clearly demon-

strated in this example.

Appendix B

Here we calculate the asymptotic behavior of the integral IV�=(1;0) following the method
developed in Ref. [3]. We start with the de�nition of this integral,

IV(1;0) = 2N2
Z
[0; 1

2
]4
dp1 dp2 dq0 dq1 e

�2�iN [2p1q0+p2q0+2p2q1+p1q1]

= 2
Z
[0;

p
N
2

]4
dy1 dy2 dx0 dx1 e

�2�i[2y1x0+y2x0+2y2x1+y1x1] :

The last equality de�nes a smooth function of real N whose derivative reduces to a triple
integral over the four faces of the hypercube [0;

p
N=2]4. As all four faces contribute

equally by symmetry, we have

dIV(1;0)
dN

= 2 � 1

4
p
N
� 4

Z
[0;

p
N
2

]3
dy2 dx0 dx1 e

�2�i[x0(y2+2
p
N=2)+x1(2y2+

p
N=2)]

= 2N
Z
[0; 1

2
]3
dp2 dq0 dq1 e

�2�iN [q0(p2+1)+q1(2p2+1=2)]

= 2N
Z 1=2

0
dq0e

�3�iNq0=2
Z 1=2

0
dq1

sin�N(2q1 + q0)=2

�N(2q1 + q0)
e��iN(2q1+q0) (40)

(we have explicitly performed the p2 integral). Making the coordinates change q
0
=

q1 + q0=2 in the inner integral and splitting its domain into two pieces we obtain

Z 1=2+q0=2

0
dq

0 sin�Nq
0

2�Nq0
e�2�iNq

0 �
Z q0=2

0
dq

0 sin�Nq
0

2�Nq0
e�2�iNq

0

=
1

2�N

"
�
Z 1

0

dt

t
sin(�Ntq0=2)e

�2�iNtq0=2 +
Z �N(1=2+q0=2)

0
du

sin u

u
e�2iu

#
: (41)
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In the asymptotic limit (N !1) the last integral gives
R1
0 e�2i�u sin =u du +O(1=N) =

�i ln(3)=2 + O(1=N). Replacing this result in the double integral (40), changing the
order of integration and making the q0{integration explicitily, we arrive at

dIV(1;0)
dN

= � 1

�2N

Z 1

0

"
e�i�N(t+3)q0=2

t(t+ 3)
� e�i�N3(t+1)q0=2

3t(t+ 1)
� log 3

3
e�3�iNq0=2

#q0=1=2

q0=0

: (42)

The contribution from the q0 = 0 endpoint to dIV(1;0)=dN is

1

�2N

Z 1

0
dt

"
1

t(t+ 3)
� 1

3t(t+ 1)
� log 3

3

#
=

1

N

 
� log 2

3�2

!
: (43)

The contribution from the q0 = 1=2 endpoint is of the same magnitude, but oscillatory in
N . Upon integration with respect to N yields

IV10 � � log 2

3�2
lnN + const. (44)

As in [3] we have given up the determination of the additive constant.
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Figure Captions

Figure 1: Stationary phase paths associated to the regular symbol � = (0; 0; 1). The
space of allowed paths is a hypercube of side 1/2 (gray squares). The interior path
(�) corresponds to a periodic trajectory and gives rise to the usual Gutzwiller term
in the trace formula. The vertex path (4) and its anomalous vicinity are responsible
for the log �h term. "Face" paths (�, �) contribute with constant terms.

Figure 2: The exact trace TrB(0;0;1) as a function of log2N (the Gutzwiller term has
been substracted) together with the corresponding vertex integral IV(0;0;1).

Figure 3: Idem Fig. 2 but for the symbol (0,0,0).

Figure 4: Integration domains. Non{decreasing contributions to the �rst trace of the
map arise from integrating the phase e�2�iNp1q0 over the shaded squares. The square
containing the origin (a stationary point of the �rst kind) provides the logN term
plus a constant one. The correct constant term is obtained when the contributions
from all the squares lying along the axes (they contain an in�nity of second kind

stationary points) are added up. Several lines of constant phase have been drawn
for reference.
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