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1 Introduction

In the past few years, there has been a great deal of attention drawn to the formulation
of globally and locally supersymmetric models in Atiyah-Ward space-times. One expects
that self-dual (super) Yang-Mills theories in D = (2 + 2) might act as a potential source
of new examples of integrable models [1, 2, 3]. Besides, it is well-known that Atiyah-Ward
space-times are the critical target manifolds for string models with 2 supersymmetries in the
world-sheet [4] and that they also provide actions for N=1 and N=2 supersymmetric non-
Abelian Chern-Simons theory in D = (2 + 1) by means of a suitable dimensional reduction
of a self-dual super-Yang-Mills theory [5].

Supersymmetry in D = (2 + 2) reveals a number of peculiarities, mainly due to the
special properties of spinors in such a space: Majorana-Weyl spinors may be de�ned [6]
and, contrary to the case of D = (3+1), the chirality constraint in superspace is not a�ected
by complex conjugation of super�elds. This statement is crucial in the process of building
up actions for the matter sector: propagation is achieved only if independent super�elds
with opposite chiralities mix together [7].

This property of mixing di�erent chirality sectors that are not related to one another
by means of a simple complex conjugation has a major inuence on the coupling to Yang-
Mills super�elds, as well as on the formulation of supersymmetric non-linear �-models.
These models, in D = (3+ 1) dimensions, have played an important role in the coupling of
supersymmetric gauge theories to supergravity. This was due to the non-linear nature of
the coupling in a supergravity model, that can be interpreted in terms of a supersymmetric
non-linear �-model [8].

In the present work, we aim at an analysis of the geometrical properties of manifolds
that may underline the construction of supersymmetric non-linear �-models in D = (2+2),
as much as possible very close to the study of the strong connection that exists between
complex manifolds and supersymmetries de�ned on space-times with a single timelike co-
ordinate [9, 10, 11, 12, 13]. However, working in the Atiyah-Ward space-time brings new
features to those formulations. Especi�cally, in the N = 1 formulation of the supersymmet-
ric �-model in terms of a K�ahler manifold, we will be led to assume it as a 4n-dimensional
manifold, its K�ahler potential being constrained by a certain decomposition. This natu-
rally restricts our manifold to a subclass of the more general possible K�ahler manifolds.
Our work is organized as follows: in Section 2, we discuss the superspace formulation of
the model and establish its connection to K�ahler manifolds. In Section 3, we contemplate
the description of isometries and geometrical conditions are set that allows us to conclude
whether or not there will be obstructions to the gauging of the isometries. The latter is the
subject of Section 4, where we also perform the coupling of the �-model to the Yang-Mills
sector of N = 1, D = (2 + 2) supersymmetry. The procedure adopted in Sections 2 and 3
follows very closely the one of ref.[10]. Finally, our Concluding Remarks are cast in Section
5. An Appendix follows, where we set up some useful remarks about Killing vectors in our
K�ahler space.
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2 The Model in Superspace

In our construction, we shall follow the method used by Zumino [9] for deriving a su-
persymmetric ��model action in D = (3 + 1) dimensions. Here, the scalar �elds de�n-
ing the ��model are the lowest components of a set of chiral and antichiral super�elds,
(�i;�i)(i = 1:::n), which in D = (2+2) are conveniently written as (we adopt the notation
and conventions of Ref. [7])

�i = Ai + i� i + i�2F i + i~�~=@�Ai +
1

2
�2~�~=@ i �

1

4
�2~�22Ai ; (1)

�i = Bi + i~�~�i + i~�2Gi + i�=@~�Bi +
1

2
~�2�=@ ~�i �

1

4
�2~�22Bi ; (2)

where A; B are complex scalars,  ; � are Weyl spinors and F; G are complex scalar
auxiliary �elds. It should be noted that, contrary to the D = (3 + 1) case, complex
conjugation does not change chirality, i.e.

fD _��i = 0 and fD _��i� = 0 ;

D��
i = 0 and D��

i� = 0 ; (3)

with
D� = @� � i=@� _�

e� _� and fD _� = e@ _� � i=e@ _���
� ; (4)

fD�;fD _�g = �2i ��� _� @� ; fD�;D�g = ffD _�;fD _�g = 0 ;

[D�; @�] = [fD _�; @�] = 0 ;

�i�(�i�) being the complex conjugates of �i(�i). Following Zumino, we take for the super-
symmetric action 1

S =
1

8

Z
d4xd2�d2e� K(�i;�i; �i�;�i�) ; (5)

where the potential K is a real function. It is obvious from (5) that we need to take the
manifold spanned by the scalar �elds as a 4n- dimensional manifold. Terms involving only
one chirality, e.g., functions of �i and �i� or �i and �i�; would not provide the kinetic term
for the ��model. Then, from the component expansion of (5), we get

S = 2
Z
d4x

�
@2K

@Ai@Bj
@�A

i@�Bj +
@2K

@Ai@B�j
@�A

i@�B�j

+
@2K

@A�i@Bj
@�A

�i@�Bj +
@2K

@A�i@B�j
@�A

�i@�B�j + interaction terms
�
: (6)

1
R
d4xd2�d2e� � R d4xD� eD _� eD _�D�
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In the latter expression, we have written only the piece associated to the kinetic term of
the complete action, which gives us the metric of the manifold as

gIJ =

0BBBB@
0 @2K

@Ai@Bj 0 @2K

@Ai@B�j

@2K

@Bi@Aj 0 @2K

@Bi@A�j 0

0 @2K

@A�i@Bj 0 @2K

@A�i@B�j

@2K
@B�i@Aj 0 @2K

@B�i@A�j 0

1CCCCA ; (7)

where

I;J = 1; :::4n and i; j = 1; :::n :

Equation (7) shows that in a four-dimensional space-time with signature 2+2, it is not
necessary that a supersymmetric ��model be associated with a K�ahler manifold, contrary
to what happens in D = (3 + 1). In fact, a condition for having a K�ahler metric is that
gIJ should be hybrid [14] and here this can only be achieved if K admits a decomposition
as below:

K(�i;�i; �i�;�i�) = H(�i;�i�) + H�(�i�;�i) : (8)

Consequently, if this is the case, the metric turns out to be

gIJ =

 
0 gIJ
gIJ 0

!
=

0BBBB@
0 0 0 @2H

@Ai@Bj�

0 0 @2H�

@Bi@Aj� 0

0 @2H�

@Ai�@Bj 0 0
@2H

@Bi�@Aj 0 0 0

1CCCCA : (9)

In the above expression for gIJ , we suceeded in explicitly writing down the o�-diagonal
structure that characterizes the metric for K�ahler manifolds [14]. But, since the holomorphic
structure has been partitionned in two disjoint pieces according to (8), we can conclude that
the manifold we arrived at is in fact more constrained than a general K�ahler manifold. This
will become clearer in the next section, when we shall discuss the isometries of this manifold.

It is also interesting to notice that the four-block K�ahlerian structure in (9) resembles
that of a Hyper-K�ahler space, although here we do not have the other complex structures
(or equivalently, the second supersymmetry) which characterizes this latter space. The
analysis of such N = 2 models shall be presented elsewhere [15].

With this choice for the potential K, and using the equations of motion to eliminate
the auxiliary �elds, we get from (5) the full action as

S =
Z
d4x

�
2 h

iĵ
@�A

i@�B�j + 2 h�
iĵ
@�A

�i@�Bj �
1

2
i h

iĵ
~�cj~��D� 

i

�
1

2
i h

iĵ
 i��D� ~�

cj �
1

2
i h�

iĵ
~�j~��D� 

ci �
1

2
i h�

iĵ
 ci��D� ~�

j

�
1

8
( hkl̂@

î
h
kĵ
@mh

nl̂
� @m@îhnĵ)~�

ci~�cj m n

�
1

8
( h�kl̂@îh

�

kĵ
@mh

�

nl̂
� @m@îh

�

nĵ
)~�i ~�j cm cn

�
; (10)
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where we have denoted(
î = i+ n; i = i+ 2n; and î = i+ 3n
Xî = Bi; Xi = Ai

�; X
î
= Bi

� :

The components of the metric were written as

h
iĵ
=

@2H

@Ai@B�j
; h�

îj
=

@2H�

@Bi@A�j
; h�

iĵ
=

@2H�

@A�i@Bj
; h

îj
=

@2H

@B�i@Aj
; (11)

and the covariant derivatives for the fermions are directly read o�:8>>>>>>><>>>>>>>:

D� 
i = @� 

i + hil̂@kh
jl̂
 k@�A

j ;

D� ~�ci = @� ~�ci + hl̂i@
k̂
h
lĵ
~�ck@�B�j ;

D� 
ci = @� 

ci + h�il̂@kh
�

jl̂
 ck@�A

�j ;

D� ~�i = @� ~�i + h�l̂i@
k̂
h�
lĵ
~�k@�Bj :

In the above expressions  c�i�z 
� and e�c�i�z e�� [7]. Using the, we get:

�
1

2
i h

iĵ
~�cj~��D� 

i �
1

2
i h�

iĵ
~�j~��D� 

ci = 2Re
�
�
1

2
i h

iĵ
~�cj~��D� 

i

�
�
~�ci ~�cj m n

��
= �i�j cm cn

from which we can easily conclude for the reality of the action.
We can get a very simpli�ed expression if we introduce 2

	I
A =

 
 i
�

~�i_�

!
; 	I

A =

 
 ci
�

~�ci_�

!
; ZI =

 
Ai

Bi

!
; ZI =

 
A�i

B�i

!
; (12)

and the matrix

�AB =

 
0 ��

� _�

~��_�� 0

!
(A = f�; _�g; B = f�; _�g) (13)

Then, the action (10) becomes

S =
Z
d4x

�
2gIJ @�Z

I@�ZJ �
i

2
gIJ 	

I�D�	
J �

i

2
gIJ 	

I�D�	
J

+
1

8
RIMJN 	M	N	I	J

�
; (14)

where

D�	
IA = @�	

IA + gIL @K gJL 	KA@�Z
J ;

RIMJN = @I@M gJN � gKL @I gKJ @M gNL ; (15)

2We will also use ZI as denoting ZI = (�i;�i):
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this expression being similar in form to the action appearing in [9].
It is worthwhile to notice that in D = (2 + 2), we can also formulate a non-linear

supersymmetric ��model using chiral and anti-chiral super�elds both subject to a reality
condition (�i = �i�; �i = �i�). Here, we take our potential K as a function of (�i;�i)
and the action as in the usual form

S =
1

8

Z
d4xd2�d2 e� K(�i;�i) : (16)

We obtain

S =
Z
d4x

�
2giĵ@�Z

i@�Z ĵ �
i

2
gîj	

î ~��D�	
j �

i

2
giĵ	

i��D�	
ĵ +

1

8
Rim̂jn̂	

m̂	n̂	i	j

�
;

(17)
where we have used a notation similar to (12), but with the hatted components denoting

the chiral conjugates, i.e. (Z i; Z î) � (Ai; Bi) and (	i;	î) � ( i; ~�i). Naturally, the metric
is

giĵ =
@2K

@Ai@Bj
;

and the covariant derivatives and Riemann curvature are totally analogous to (15).
Obviously, this space is not K�ahlerian, as it is not a complex space. But it is curious to

notice that it possesses some properties of a K�ahler space if we just replace the notion of
complex conjugation by that of chiral conjugation, that would take Z i into Z î and vice-versa.
This class of �-models is a feature of the 2+2 signature of the space-time on which we build
our supersymmetry. In D = (3 + 1), a N = 1-supersymmetric �-model requires a complex
K�ahler manifold as its target space [9, 11]. We then see another example, together with
the one appearing in (7), of a non-K�ahler manifold associated to N = 1-supersymmetric
�-models in D = (2 + 2); however they exhibit the nice feature of being included in the
class of theories generated by a scalar potential K.

3 Isometries

In the previous section, we have imposed the decomposition (8) in order to render manifest
the K�ahlerian structure of the target space. From (9), we observe that the transformations
for the potential K, allowed by the condition of metric invariance, are of the form

K �! K
0

= K + F (ZI) + G(ZI ) : (18)

These are the holomorphic transformations of a general K�ahler manifold. Nevertheless, the
D = (2+2) spacetime structure forbids such a transformation, since terms out of the blocks
gIJ would be generated. This happens because the invariance of the action (5) is ensured
by chiral transformations

K �! K
0

= K + F (�;��) + G(�;��) : (19)
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The way to make (18) and (19) compatible is to admit that the most general transformation
of the potential K is

K �! K
0

= K + �(�) + ��(��) + �(�) + ��(��) : (20)

This has an immediate consequence on the possible coordinate transformations allowed
for the manifold. The holomorphic transformations of a general K�ahler manifold are de-
composed into a more restricted subgroup, in which coordinates associated to di�erent
chiralities do not mix 3

Ai �! A
0i = f(Ai) ; Bi �! B

0i = f(Bi) and c:c: : (21)

If we permitted that a coordinate Ai could have been taken into a Bi, terms out of the
anti-diagonal in the metric of (9) would have been generated. In this way, we see that
we are dealing with a subset of manifolds among those that have the most general K�ahler
form. Also, from these facts, we can conclude that the Killing vectors will be parametrized
in terms of di�erent chiral components:

KI
a =

 
�ia(A)
� ia(B)

!
; KI

b =

 
��ib (A

�)
� �ib (B

�)

!
: (22)

The possibility of working with the above Killing vectors is due to the fact that the metric
does not contain the components gij ; gîĵ; gij; gîĵ (see Appendix). Under a global isometry,

the coordinates of the K�ahler manifold will transform as

Z
0I = exp (L��K)Z

I !

(
A

0i = exp (L���)Ai

B
0i = exp (L��� )Bi and c:c: ; (23)

where LX is the Lie derivative along X and � is a global parameter. The Killing vectors
generate the algebra of the isometry group of the K�ahler manifold, i.e. [Ka;Kb] = f cab Kc:
The isometries induce transformations in the potential K, which are described in their
general form by

�K = �a
�
@K

@ZI
KI
a +

@K

@ZI
KI
a

�
= �a

@H

@Ai
�ia+�

a@H
�

@Bi
� ia+�

a @H
�

@A�i
��ia +�

a @H

@B�i
� �ia : (24)

Comparing eq.(24) with eq.(20), which is also an invariance of the metric, we can write

�a(A) =
@H(A;B�)

@Ai
�ia(A) + Ya(A;B

�) ;

�a(A) =
@H�(B;A�)

@Bi
� ia(B) � Y �

a (B;A
�) ;

��a(A
�) =

@H�(B;A�)

@A�i
��ia (A

�) + Y �

a (B;A
�) ;

��a(A
�) =

@H(A;B�)

@B�i
� �ia (B

�) � Ya(A;B
�) : (25)

3Fromnow on, the term holomorphicwill mean not only a splitting in terms of �elds and their conjugated,
but also a splitting in di�erent chiralities.
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The introduction of the complex functions Ya is necessary, so that no further restriction is
imposed on the potentials H 0s. The Y 0

as are naturally related to the structure of Killing
vectors in K�ahler space. To show this, we may start by the derivation of the �rst equation
in (25) with respect to B�:

@2H

@Ai@B�j
�ia(A) = �

@Ya
@B�j

; (26)

or deriving �a with respect to A�:

@2H�

@Bi@A�j
� ia(B) =

@Y �
a

@A�j
: (27)

These equations and their conjugates can be written in a compact form in terms of a real
potential Ya = iY �

a (B;A
�)� iYa(A;B�)

gIJ K
I
a = �i

@Ya

@ZJ
and c:c: : (28)

This equation is just the restriction imposed by the Killing equation with mixed indices,

rI KJ + rJ KI = 0 ; (29)

on the form of the Killing vectors, which become described by the potential Ya.
The determination of this potential is crucial for the process of gauging, as we shall see

in what follows. In order to accomplish this goal, we will use the method established in
[10]. Contracting eq.(28) with KJ

b and its conjugate with KI
b , and then comparing them

both, we get the identity

KI
b

@Ya
@ZI

+ KI
a

@Yb

@ZI
= 0 : (30)

Now, under an isometry transformation, Ya transforms as

�Ya = �b
�
@Ya
@ZI

KI
b +

@Ya

@ZI
KI
b

�
; (31)

which, by virtue of (30), may be written as

�Ya =
�b

2

�
@Y[a

@ZI
KI
b] +

@Y[a

@ZI
KI
b]

�
: (32)

With the help of eqs.(24 - 28), we get the fundamental relation

KI
[a

@Yb]
@ZI

+ KI
[a

@Yb]

@ZI
= f cab (�c + ��c ) ; (33)

where �a = �a+�a and f cab are the structure constants of the isometry group. In components,
this last equation means

�i[a
@�b]
@Ai

= f cab �c + cab

� i[a
@�b]
@Bi

= f cab �c � c�ab and c:c: ; (34)
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and c�ab = � c�ba is a complex constant. Finally, from (32 - 34) we get

�Ya = �b
�
@Ya
@Ai

�ib +
@Ya
@B�i

� �ib

�
= � �b f cab Yc � �b cab and c:c: : (35)

At this point we see that, in order to make explicit the potentials Ya as functions of the
Killing vectors, we have to restrict the isometry groups to be semi-simple. This becomes
clearer if we combine (28) in (35):

Ya = 2 f cab �
i
d �

�j
c

@2H

@Ai@B�j
gbd + f cab cdc g

bd and c:c: : (36)

To de�ne Ya we needed to introduce the inverse Killing metric, and this means that Abelian
factors would spoil the de�nition of Ya, so that only semi-simple groups are allowed [16].
The constants cab express an arbitrariness in the de�nition of Ya, as they can be reabsorbed
by the shift Ya ! Y

0

a = Ya � f cabcdcg
bd, whenever gab is de�ned. This property will be

of fundamental importance in the procedure of gauging the model.
In the particular case of a non-semi-simple group, G, of isometries, for which f cab is non-

vanishing only when all its indices are associated to generators in the semi-simple factor S,
i.e. G has the form

G = S 
 AN ; (37)

where AN represents the direct product of N Abelian factors, and if all the constants
cab (determined by (34)) with indices associated to the latter vanish, then from (35) we
can conclude that the potential Ya will be allways determined up to N arbitrary complex
constants associated to each Abelian factor.

In the general case of a non-semi-simple group, with Abelian factors generating non-zero
constants cab, eq.(35) may not admit any solution and this will be an obstruction to the
gauging, as we shall see in the following.

4 The Gauging

The isometry transformations of the coordinates on a K�ahler manifold are given in eq.(23).
Now we can make this symmetry local by taking the constant parameter � as super�elds
of de�nite chirality. Those transformations are then written in super�elds as

� �! �
0

= exp (L���)�

� �! �
0

= exp (L���)� and c:c: ; (38)

The super�elds � and � are chiral and anti-chiral respectively. But as we have already
seen, in D = (2 + 2) this does not make any restriction on their reality. In D = (3 + 1)
they would be necessarily complex conjugates of each other.

Let us then take � = ��; � = ��: Here, the local in�nitesimal isometries read as

��i = �akia
��i = �a� ia and c:c: ; (39)
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and the K�ahler potential transforms like

�K = �a

�
@H

@Ai
�ia +

@H�

@A�i
��ia

�
+ �a

�
@H�

@Bi
� ia +

@H

@B�i
� �ia

�
: (40)

In order to have a transformation which could be compared with (20), all super�elds should
transform with the same parameter. This can be obtained if we introduce a real vector
super�eld V , which in D = (2 + 2) assumes the form,

V (x; �; e�) = C(x) + i��(x) + ie�e�(x) + 1

2
i�2M(x) +

1

2
ie�2N(x) +

+
1

2
i���e�A�(x)�

1

2
e�2��(x) � 1

2
�2e� e�(x)� 1

4
�2e�2D(x) ; (41)

where C, M , N and D are real scalars, �, e�, � and e� are Majorana-Weyl spinors and A� is
a vector �eld. Now we replace the super�elds �i [17] by

~�i � exp (LV �� )�
i and c:c: ; (42)

so that ~�i can transform as
~�

0i = exp (L��� )~�
i : (43)

This is only possible if the vector super�eld transforms as

exp (LV 0

��) = exp (L��� ) exp (LV ��) exp (�L���) : (44)

Since the parameters � and � are real, we have from (44) that V transforms indeed as a
real vector super�eld. The in�nitesimal isometries have the form

��i = �akia
�~�i = �a� ia and c:c: ; (45)

and the transformation (40) takes a form comparable to (20), with the replacements
f�; ��g �! f~�; ~��g . But now, since the parameter � is a chiral super�eld, we do
not have the action invariant under local isometries, for

S �! S
0

=
1

8

Z
d4xd2�d2 e� �a

�
�a(~�) + ��a(~�

�)
�

6= 0 : (46)

However, the invariance of the action can be recovered if we introduce an antichiral super-
�eld and its complex conjugate, � and ��, such that they transform like

�� = �a�a (�);

��� = �a��a(�
�) : (47)

Then, we take our action as

S� =
1

8

Z
d4xd2�d2 e� �H(�;��) + H�(��;�) � � � ��

�
: (48)
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This action is globally invariant under the in�nitesimal form of the transformations (23)
and (47), and since � and �� are anti-chiral, we also have S� = S. Those super�elds
should be thought of as extra coordinates extending our manifold [10]. In this way, we
write two new Killing vectors

�a(�) �! �
0

a(�) = � ia(�)
@

@�i
+ �a(�)

@

@�
and c:c: ; (49)

and the new K�ahler potential K
0

= K � �� �� is invariant under their action. Finally, the
gauging of the isometry is simply performed by replacing � �! ~�; � �! ~� and c.c. in
(48). Now using the result

K(�; ~�;��; ~��) = K(�;�;��;��) + 2Re
�
exp (L

0

)� 1

L0
V a

�
�a(�) + Y �

a (�
�;�)

��
;

~� = � +
exp (L

0

)� 1

L0
V a�a(�) ; (50)

L
0

� LV ��
0 ;

we are left with the form for the action that couples the �-model to Yang-Mills �elds
through the gauging of the isometries:

S =
1

8

Z
d4xd2�d2e�  H(�;��) + H�(��;�) + 2Re

�
exp (L)� 1

L
V a Y �

a (�
�;�)

�!
:

(51)
We can still implement a simpler expression for this action if we choose to work in the
Wess-Zumino gauge (44) (see for instance [17]). We also make use of eqs.(22) and (28). In
this way, the action (51) is rewritten in the following very simple �nal form

S =
1

8

Z
d4xd2�d2 e�  H(�;��) + H�(��;�) + 2 V a Y �

a + 2 V a Ya

� 2 V a V b KI
a gIJ K

J
b

!
: (52)

Then, we see how the potential Ya, determined in eq.(36) for semi-simple isometry groups,
couples to the vector super�eld V a in the gauged action. As we discussed in the end of
Section 3, Abelian factors in the isometry group may lead to the appearance of arbitrary
constants in the potential Ya. These will also couple to the vector super�eld generating the
so-called Fayet-Iliopoulos terms [10, 18]. In the general case of non-semi-simple isometry
groups, as it happens in D = (3 + 1) dimensions, the potential Ya may not be determined,
and this will represent an obstruction to the gauging of the non-linear �-model.

It would be perhaps interesting to consider the possibility of working with super�eld
parameters, � and �, that are not real. This would lead to the introduction of a family of
complex vector super�elds to perform the gauging; however, the appearance of more than
one Yang-Mills multiplet in the gauging of the isometry group is beyond the scope of the
present work.
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5 Concluding Remarks

We have here considered a few geometrical aspects concerning non-linear �-models in the
context of an N = 1 supersymmetry de�ned in D = (2 + 2). We have shown that such
models in general do not need to be of a K�ahler type, even if they are generated by a
potential K. As an explicit example, the construction of a real supersymmetric �-model
has been worked out. Then, restricting ourselves to a special sub-class of K�ahler manifolds,
we proceeded to an investigation of the main points involved in the process of gauging its
isometries. In particular, we have choosen the gauge parameters as constant real super�elds,
which would not be possible in a D = (3 + 1) space-time. We ended up with a superspace
action, eq.(51), that is invariant under local isometry transformations. The kinetic terms
of D = (2 + 2) �-models are o�-diagonal (6) and this would signal the presence of ghosts
(negative-norm states) in a space-time of the Minkowski type. However, the next step would
be to carry out a dimensional reduction from D = (2 + 2) to D = (1 + 2) and D = (1 + 1),
where the propagation of �elds is better controlled. Following the results of [5] and [7],
one could go to lower dimensions in such a way that non-physical modes be eliminated
and �-models coupled to Yang-Mills �elds may be of some relevance in connection with
conformal theories and integrable models.

The relation of N = 1 models after dimensional reduction to chiral �-models in 2
dimensions [19], and also the construction of an N = 2 �-model in Atiyah-Ward space-time
will be the subject of further investigation [15].

6 Appendix

The K�ahler space treated in this work is of the type C2m � C2m with metric (9), where
each of the blocks is a (2n x 2n) matrix whose respective components gij ; gîĵ; and gij; gîĵ
vanish. Since the more general K�ahler space would allow those components, our K�ahler
space is a subclass of the more general one.

From (9), we obtain for the connections

�ijk = gir̂@jgkr̂ ;

�î
ĵk̂
= g îr@ĵgk̂r ;

�i
jk
= gir̂@jgkr̂ ;

�î
ĵ k̂
= g îr@

ĵ
g
k̂r
; (53)

and for the curvatures

Ri
jkL = @L�ijk with L = fl̂; l; l̂g ; Ri

jKl = �@K�ijl with K = fk̂; k; k̂g ;

Rî

ĵ k̂L
= @L�îĵk̂ with L = fl; l; l̂g ; Rî

ĵKl̂
= �@K�îĵ l̂ with K = fk; k; k̂g ;

Ri

jkL
= @L�ijk with L = fl; l̂; l̂g ; Ri

jKl
= �@K�ijl with K = fk; k̂; k̂g ;

Rî

ĵ k̂L
= @L�î

ĵk̂
with L = fl; l; l̂g ; Rî

ĵKl̂
= �@K�î

ĵ l̂
with K = fk; k; k̂g :
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Now, we shall analyse the assumption on the structure of the Killing vectors shown in
eq.(22). We intend to show just a sketch of a proof that is in complete analogy to the one
given in [20], so that it will be just a slight modi�cation of the Theorems 2.4 and 2.5 of
that reference.

As it is well known, in a compact K�ahler space a necessary and su�cient condition for
a contravariant vector KI be a Killing vector is

gJKrJrKK
I +RI

JK
J = 0 ;

rIK
I = 0 ; (54)

where RI
J is the Ricci tensor.

Let us impose that the Killing vector KI = (ki; k î; ki; k î) satis�es

rik
i = rîk

î = 0 and c:c: : (55)

Then, from (54), we also have �I = (ki; 0; 0; 0); � I = (0; k î; 0; 0); �I = (0; 0; ki; 0) and

�I = (0; 0; 0; k î) as Killing vectors. This allows us to write for each of them,

rI�J +rJ�I = 0 etc: ; (56)

with �I = (0; 0; 0; k
î
); k

î
= g

îj
kj. Recalling that �k̂

îĵ
is the only non-vanishing component

of �k̂IJ , we have from (56) that �
î
= �

î
(��) or k

î
= k

î
(��), and in an analogous way

ki = ki(�); kî = kî(�) and ki = ki(�
�). Those covariant components of the Killing vector

KI being holomorphic, we have from [20] that KI is harmonic, i.e., it satis�es,

rIKJ �rJKI = 0 : (57)

Since KI is a Killing vector we also have rIKJ +rJKI = 0. This, together with eq.(57),
gives rIKJ = 0, and then rIK

J = 0, which also implies

ki = ki(�); k î = k î(�); ki = ki(��); k î = k î(��) : (58)

We have then proven that Killing vectors satisfying (55) are holomorphic in all their coor-
dinates.

Conversely, let KI be a vector satysfying (55) and holomorphic in all its coordinates
(58). From the Ricci identities

rJrKK
I �rKrJK

I = RI
LKJK

L ; (59)

we get

r
ĵ
rkk

i = Ri

lkĵ
kl ;

rjrk̂k
î = Rî

l̂k̂j
k l̂ ;

rĵrkk
i = Ri

lkĵ
kl ;

rjr^
k
k î = Rî

l̂k̂j
k l̂ : (60)
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Contracting each of them respectively with gĵk; gjk̂; gĵk; gjk̂, and using (55), we can write

gĵkr
ĵ
rkk

i +Ri
l k

l = 0 ; rik
i = 0 and c:c: ;

gjk̂rjrk̂
k î +Rî

l̂
k l̂ = 0 ; rîk

î = 0 and c:c: ; (61)

or in a compact way,

gJKrJrKK
I +RI

LK
L = 0 and rIK

I = 0 :

This is exactly the condition (54) for a Killing vector. We have proven then that a vector
satisfying (55) is a Killing vector if and only if its components are holomorphic in all
coordinates �; �; ��; ��.
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