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ABSTRACT

We generalise to the n—component cubic model the subgraph break—collapse method which
we previously developed for the Potts model. The relations used are based on expressions
which we recently derived for the Z()\) model in terms of mod-) flows. Our recursive
algorithm is similar, for n = 2, to the break—collapse method for the Z(4)} model proposed
by Mariz and coworkers. It allows the exact calculation for the partition function and
correlation functions for n~component cubic clusters with n as a variable, without the need

to examine all of the spin configurations.

Key-words: Cubic model; Subgraph break-collapse method; Graph theory; Sta-

tistical mechanics.
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1. INTRODUCTION

The n—component cubic model was introduced by Kim, Levy and Uffer (1975) in the
description of phase transitions in cubic rare-earth compounds which have
sixfold—degenerate ground states {(and hence correspond to n = 3). Aharony (1977)
generalised this model in order to include quadrupolar interactions, besides the dipolar
ones. This extended cubic model, which we will henceforth call for simplicity the cubic
model, is a discrete version of the continuous n—component spin model. Since its
introduction, the cubic model has been studied by several methods (Kim and Levy 1975,
Kim et al 1976, Hilhorst 1976, Domany and Riedel 1979, Nienhuis et al 1983, Badke et
al 1985, Badke 1987, Tsallis et al 1988). It contains many interesting limiting cases (e.g.,
self-avoiding walks, spin 1/2 Ising model, the Ashkin-Teller mode! and the Potts model)
and for n = 1 and n = 2 it becomes identical to the Ising and Z(4) models respectively.
For a general value of n, the cubic model is a particular case of the Z(2n) model in
which many values of the pair interaction energy become degenerate leading to only three
which are distinet.

In a2 recent paper on the Z()\) model (de Magalhdies and Essam 1988a, "The Z(x)
Model and Flows™), herein referred to as ZF, we developed a recursive algorithm for the
calculation of the exact partition function and pair correlation functions of Z(3\) clusters.
These clusters were represented by graphs, the vertices and edges of which represented
respectively the atoms and the pair interactions between them. This technique, the
subgraph break—collapse method (SBCM), is an extension of the SBCM for the Potts
model which we presented in paper III of the series of papers with the general title
"Potts model and Flows" (de Magalhdes and Essam 1988b, herein referred to as PF3).
The SBCM for the Z(\) model is based on a number of equations — the "graph reduction
equations™, the proofs of which were given in ZF through the use of mod-\ flows in
graphs. One of these equations, the effective break—collapse equation, relates the partition

function and correlation functions for a graph G with those for the "broken" graphs,
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“collapsed” graphs and graphs with "frozen edges". These graphs are obtained from G
by respectively deleting, contracting and fixing the value of the flow in a chosen edge f.
The other graph reduction equations allow the calculation of the above mentioned
functions for articulated graphs and graphs in series or in parallel. The SBCM provides
an efficient way of computing the partition function and the correlation functions by
applying recursively the graph reduction equations, thereby avoiding the time-—consuming
summation over states.

An alternative method for calculating the above functions is the break—collapse
method (BCM) of Mariz and coworkers (Mariz et al 1985, 1988, Tsallis 1988). The latter
method differs from the SBCM in three main aspects: (i) it only replaces a subgraphs
which is a combination of edges in series and/or in parallel by a single effective edge
whereas the SBCM uses a more general subgraph replacement; (ii) its break—collapse
equation contains graphs with "precollapsed” edges instead of "frozen" ones; (iii) with the
exception of graphs with two vertices, the recursion terminates when all the edges of G
are precollapsed rather than when just ¢(G) of them are frozen (here c(G) is the number
of independent cycles in G). In ZF precollapsed edges were shown to correspond to
edges on which the flow can take on several values (namely 0,8, \-§). Although
therefore, for A > 4, the BCM generates less graphs in each iteration than the SBCM, it
was argued in ZF that for any X the BCM is still less efficient than the SBCM. The
reasons for this are twofold: (a) it needs more iterations; (b) for A>4 the determination
of the weight to be associated with a terminal graph (i.e. graphs with all edges
precollapsed) is an enumeration problem whose computing time grows exponentially with
the number of cycles in the graph. For X\=4 a simple formula for the weight of a
terminal graph is awvailable.

Here we specialise the above SBCM to the n-component cubic model taking
advantage of the high degree of symmetry of its Hamiltonian. In particular, the effective
break—collapse equation contains a sum of terms corresponding to the chosen edge f being

frozen with values 0,2,4,..,2n-2. These terms can be naturally grouped together leading to
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a single term which corresponds to a graph for which the flow on f must be even. We
call such an edge "even—frozen™, and for n = 2 it becomes identical with the precollapsed
edge introduced by Mariz et al (1985) in the Z(4) algorithm. TUnlike the BCM for the
Z(\) model, in our algorithm for the cubic model the weights of the terminal graphs with
all edges even frozen are given by simple formulae for any value of n. Besides not
having the inconvenience of the BCM mentioned in (b) above, our method allows the
calculation of correlation functions for cubic clusters for all values of n simultaneousiy
through a single application of the SBCM,

In section 2 we introduce the model and summarise previous results concerning the
partition function (Biggs 1976,1977) and correlation functions (ZF) for the Z{)\) model. In
§3, we establish the relationship between the cubic model! and the Z(2n) model. We also
prove that the equivalent vector transmissivity (from which one can calculate the
correlation functions) has only two different components, The graph reduction equations
of the SBCM are given in section 4. In 85, we describe the SBCM algorithm and

illustrate it by the example of the Wheatstone bridge graph. Finally our conclusions are

presented in section 6,

2, MODEL AND REVIEW OF KNOWN RESULTS

In this section we define the model and summarise previous results obtained for the
Z{)\) model (Biggs 1976,1977 and ZF) which will be needed in the development of the

subsequent sections.

2.1 The Cubic Model.

We consider the n—component cubic model for a graph G with vertex set V and
edge set E. With each vertex i of V we associate an n—component vector which can point
in one of the 2n directions (positive and negative) of the cartesian axes in an

n—-dimensional space, i.e.
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§; = (¢1,0,0,...,0) or (0,£1,0,...,0) or ... (0,0,0,...,41). (2.1)

The cubic model can be described by the following dimensionless Hamiltonian (Aharony

1977)

BH(G) = - 3 [nKeS{.Sj + nLo(S;.5;)2) (2.2)
ecE
where @=1/kgT, and K, and L. are the respective dimensionless coupling constants
associated with the dipolar and quadrupolar interactions between spins §; and Sj located at
the vertices i and j of the edge e. The sum in eq (2.2) is over all interacting spin pairs

on G.

The Hamiltonian (2.2) may be written also in terms of an n-state Potts variable o

(g = 0,1,...,n-1) and an Ising spin variable o; (g; = tl1) as (Aharony 1977):

BH(G) = - 5 [MKoo10j5(ay,a)) + nled(ay,ap)] (2.3)
ectE
which is a particular case of the (N wNﬁ) model (corresponding to Ng=2 and Ky 4 =

K1,0) introduced by Domany and Riedel (1979).

2.2 Known Results for the Z()\) model.

In ZF, a Z()\) cluster is represented by a graph G with vertex set V, edge set E,
number of vertices » and number of edges ¢. With each vertex i of V is associated a
state variable n; which can take on one of the ) integer wvalues 0,1,...,:\-1. The

dimensionless Hamiltonian is given by:

where nj-nj is calculated mod-) and the pair Interaction energy is
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independent of the ordering of i and j so that
he(h-a) - he(a). (2.5)

The components te.(cor) of the M~dimensional vector transmissivity t. (Alcaraz and Tsallis

1982) of the edge e are defined by:

a1

t (o) = % )} ez'i“ﬁ/k e Be(® (e=0,1,...,\1) (2.6a)
€ e p=0
where
PN | _he (o)
Z = ¥ e (2.6h)
¢ a=0

Of these A~components only A = [N2] (where [ ] stands for the integer part) are
independent since t,(0) = 1 and to(A—a) = te(a).

The partition function Z(G) can be expressed (Biggs 1976, 1977) in terms of tg(a)

£

zZ6) =2""f (mz) DG). (2.7a)
ecE © )

Here D(G) is the generating function for flows given by:

D(G) = L n te(p(e)) (2.76)
peF{(G) ec¢E

where fe) is the value of the mod-\ flow p on the edge e, and F(G) is the set of all
mod-: flows on G. Given an arbitrary directing of the edges e¢¢E, one can define a
mod-Xx flow (see, for example, Essam and Tsallis 1986) as a function defined on E which
assigns to each edge e one of the integer values 0,1,...,A-1 subject to a "conservation
condition” at each vertex ieV, i.e., the sum of the inward flows minus the sum of the
outward flows at i is zero mod X,

Pair correlation functions can normally be written as the thermal average of some
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function f(n1—n3) which depends only on the difference, mod A, of state variables ny and
np. Here 1 and 2 refer to arbitrarily chosen vertices (called roots of the graph), and the

thermal average can be Fourier decomposed as (ZF):

a1
1
<f(n1-"2)>therma1 -5 ¥ fk-a Ta(l,z,G) (2.8
o=0
where
——21'1(!11-112)/)\ Na(l,Z;G)
Ta(],Z;G) = Je >thermal - W (2.9a)
with
NQ(I.Z:G) - X M t_(p(e)) (2.9b)

pEFa(G) ecE

In (2.9b) , Fyo(G) is the set of all rooted mod-\ o—flows, i.e., of mod—)\ flows subject to
a fixed external flow o entering at root 1 and leaving at root 2, N(1,2;G) = {N,(1,2;G),
e=0,1,...,x-1} is called the flow-vector, although strictly speaking each of its components
is a generating function for internal flows having a fixed external flow « in at 1 and out

at 2. Notice that Np(1,2:G) is exactly D(G) given by (2.7b).

The wvector T(1,2;G) = {T,1.2;G), o=0,1,...,x-1} is called the equivalent vector
transmissivity between the roots 1 and 2 of G since it is equal to the vector
transmissivity toff of a single effective edge between 1 and 2 having an equivalent
Hamiltonian heg(ny-nz) given by:

Tr' [exp [-:e: he(ni-nj)] ] = Cexp [-h, (ny-n,)] (2.10)

E

where C is a constant and Tr' denotes the sum over all possible values of n; for all
vertices i different from the roots 1 and 2. The replacement of a cluster of atoms by a

single effective edge connecting just two atoms with an effective interaction plays a
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fundamental role in real space renormalisation group calculations and also, as we will see
later on, in the SBCM.

In the case of the Potts model we have that:

he(O) for n ~n

)d(e+he(0) for ni# n.i

n.) = J

he(ni nj) { (2.11)

and, therefore, to(c) = to for any o#0, where t. is the thermal transmissivity (eq (2.2) of
PF3) used in many real space renormalisation group calculations (see, for example, Tsallis

1988). Eq. (2.9b) reduces, for the Potts model to:

N1(1,2;G) = N3(1,2:G) = ... = Ny.1(1,2:G) = N(1,2;G) =
h) Flz()\,G') m t (2.12a)
G'CC ecE’
and
N0(1,2;G) = D(G) = ¥ F{{(\,G") )| te {2.12b)
G'SG ecE’

where Fp2(\,G') and F()G') are respectively the two-rooted and unrooted flow
polynomials (see Essam and Tsallis 1986) of the partial graph G' of G. They correspond
to the respective numbers of proper (i.e. p(e)#0 for all e) rooted mod-» a—flows and

unrooted flows.

3. THE TWO-COMPONENT EQUIVALENT VECTOR TRANSMISSIVITY

3.1 Relationship between the Cubic Model and the Z(2n) Model.
For n=1 and 2 the n-component cubic model is equal to the Ising and Z(4) models

respectively. For general n, the cubic model is the particular case of the Z(2n) model in
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which the pair interaction energies ho(x) (@ = 0,1,...,2n-1) become highly degenerate,

namely:

he(1) = he(2) = ... = hg(n-1) = he(n+l) = ... = hg(2n-1) (3.1)

and where the energy differences are related to the dimensionless coupling constants K,

and L, through:

he(n) - he(0) = 20K, (3.22)

and

he(1) - he(0) = n(Ke+Le) (3.2b)

Combining eqs (3.1) and (3.2) with the definition (2.6) of to(a) we arrive at only two

components of the vector transmissivity which are different:

(@) 1 - o"2re (1) (a=1,3,...,2n-1) (3.3a)
to(a) = -t a=1,3,...,2n- .3a
¢ 1+2(n-l)e-n(K9+Le)+ e-2nl(e ¢
and

| - 20-n(KetLe), -2k,
to(n) = =t .(2) (x=2.,4,...,2n-2) (3.3b)
© 1 + 2(n-1)e MKetle) -2nKe 7€

The variables to(1) and to(2) are precisely the respective variables Xg = 2 and %, which
appear in the model of Domany and Riedel (1979) specialised to the cubic Hamiltonian.
The two-dimensional vector (te(1),te(2)) is the vector thermal transmissivity of Tsallis et al
(1988) used in their renormalisation group -calculation of the critical frontier of the

ferromagnetic cubic model on the square lattice,
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3.2 The Two-component vector equivalent transmissivity

In this section we prove that, similarly to egs {3.3), only two of the 2n-1

components of the flow vector of the Z{2n) model with o#0 are distinet in the case of

the cubic model:

N1(1,2;G) = N3(1,2;G) = ... = Np;_1(1,2;G) (3.4a)

and

Ny(1,2;G) = Ng(1,2;6) = ...

Nyn-2 (1,2:G) (3.4b)

where N,(1,2;G) is defined in (2,9b) with

te(p(e)) = te(1) for odd o(e) (3.5a)
and

te(p(e)) = te(2) for even {e) (3.5b)

The equalities (3.4) are related to the fact that, for the Potts model, N,(1,2;G) for o0

is independent of the external flow « (see eq 2.12a).

We first recall that, as shown in the appendix of ZF, one can generate the rooted
mod—-h o—flows starting from the unrooted mod-\ flows. For this, one must choose a
spanning tree 7 on G which then determines a unique path 4 which connects the roots 1
and 2. One can then construct a rooted mod-\ o-flow by adding, to each of the
2¢(G) unrooted mod-) flows, a flow &, having value o on the path ¢ from 1 to 2 and
zero on all other edges. For example, for the graph G of Fig. 1a and the spanning
tree 7 of Fig. 1b, one can generate from the unrooted mod-6 flows shown in the first
column of Fig. 2, the corresponding rooted mod-6 1-flows and rooted mod—6 3-flows

drawn in the 2nd and 3rd column respectively. These were obtained from the unrooted
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mod-6 flows by adding the flow &5 shown in Fig (1d) with 4 = 1 and 5 = 3
respectively.

We begin the proof by noting that similarly to the above procedure, one can
generate the rooted mod-2n (o+2)-flows contributing to N(1,2;G) by adding, to each of
the rooted mod—2n o~flows which are generated by N (1,2;G), a flow & having value 2
on the unique path ¢ from 1 to 2 and zero on all other edges. This provides a bijective
mapping between the flows of N,(1,2;G) and those of N+2(1,2;G). Notice that for A
even (which is the case we are considering here with A = 2n), this procedure cannot
change the value of the flow on any edge from odd to even.

Now let us consider an n—component cubic cluster in which, for notational simplicity,
we shall assume that t, = t for all edges e. By the above construction the powers of
t(1) (which are, in the cubic model, associated with the odd flows according to eq (3.5a))
must be the same for any rooted mod-2n o—flow and its corresponding rooted mod-2n
{ort2)-flow. Also when t{1) = t(2) = t we must regain the Potts model formulae. It
follows that, since any term [t(1)IK[t(2)]¢ (k,2 = 0,1,...,¢) which appears in N(1,2;G) for
the cubic model becomes tk*2 in N(1,2;G) for the Potts model, the power of t(2) for
corresponding flows may be different but if and only if the power of t is different for the
Potts model.  Considering that for o>0: (i) N(1,2;G) is independent of the external flow
for the Potts model, (ii) the addition of the flow &) does not change the number of
edges with odd values of flow, we conclude that the changes in the power of t for
different mod-2n flows with a fixed number k of edges on which their values are odd
compensate in such a way as to maintain the same sum, This induces a compensation in
the powers of t{2) for the cubic model in such a way that the term

ik T arean?
£2=0
is the same for both N(1,2;G) and Nn+2(1,2;G). In the last two examples of Fig. 2
we show the compensation between the terms [t(1)]2 and [t(l)]z[t(Z)}2 which occur in

N1(1.2;G) and Nj3(1,2;G) for the 3-component cubic model on the graph G of Fig. 1la.
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In general, as this compensation happens for any power k (k = 0,1,...,&) of t(1), then it
follows that N(1,2;G) = N49(1,2;G) leading thus to egs. (3.4).
The combination of equations (3.4) and (2.9a) shows that the equivalent vector

transmissivity has only two distinct components.

4. GRAPH REDUCTION EQUATIONS OF THE S$SBCM

The main purpose of the SBCM is to calculate the flow vector for a graph G (and
hence the partition function and pair correlation functions) in terms of those for “smaller”
graphs. Three methods of reducing the size of a graph are used in the SBCM:

(i) splitting into pieces at articulation vertices;
(ii) replacement of subgraphs attached at only two vertices by effective edges;
(iii) removal of (effective) edges through the use of the effective break—collapse equation.

The graph reduction equations for the n—component cubic model associated with the

above mentioned procedures will now be derived from those for the Z(2Zn) model.

4.1 Splitting of Articulated Graphs.

Suppose that a two-rooted graph G is composed of two subgraphs G{ and G, which
intersect only at the articulation point i (see Fig. 3). Two cases can arise, namely: (a)
both roots 1 and 2 belong to one of the subgraphs, say Gy (Fig. 3a); (b) the root 1
belongs to, say, Gy and 2 is in G (Fig. 3b). In case (b) if i#l or 2 then G and G5

are said to be in series.

(a) Both roots in Gy

Eq. 3.2 of ZF gives:

Ny(1,2;G) = N(1,2;G;) D(Gy) (@ = 0,1,2) (4.1)
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(b) G and G, are in series:

It follows from (3.3) of ZF that

Np(1,2;G) = Ny(1,i;61) Ny(i,2;G3)  (« = 0,1,2) 4.2)

which, for two ordinary edges (G; = e; and Gy = e;) recovers Tsallis et al's result

(1988).

4.2 Parallel Combination of Graphs.
Now let us consider a two-rooted graph G which is the union of two sugraphs Gy
and Gy which intersect only at roots 1 and 2 (see Fig. 3c). In this case, Gy and G are

said to be in parallel. Using eqs. (3.4) of ZF and egs. (3.4) we find:

D(G) = D(G1)D(G3) + nN1(1,2;G1)Nq(1,2:Gp) + (n-1)Np(1,2:G1)Na(1,2:G9)  (4.32)

N1(1,2;G) = D(G1)N{(1,2;G3) + D(Gy)N;(1,2:Gq) +

(n—1)[Ny(1,2;G1)N1(1,2:G3) + Ny(1,2;61)Nx(1,2;G,)] (4.30)
and
N2(1,2;6) = D(G{)N(1,2;G3) + D(G2)N2(1,2;Gy) +

nN1(1,2;G1)N1(1,2;G9) + (n-2)N2(1,2;G1)N2(1,2;Gy) . (4.3c)

Egs. (4.3) particularised for two ordinary edges ey and ey in parallel give

o Nl(;,z;c) _ 5D (D [ 5D+ (1ey @) ot
P ( 1+ ne (D, (D+ (a-1) ¢ (2)6,(2)

and

Np(1,236) ¢, (2)+t,5(2)+ nt (D, (1)+(n-2)t,(2)¢,(2)
p 1+ nt (1)t (1+ (n-1) ¢,(2)t,(2)
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which agrees with Tsallis et al's parallel algorithm (1988).

Eqs. (4.3) can be written in a factorised form similar to the series equation as (ZF)

Ng(1,2;6) = Ng(1,2;G1) Ng(1,2;G) (4.5)

where the discrete Fourier transforms ﬁﬁ are:

D(G) = D(G) + nNy(1,2;G) + (n-1)Ny(1,2;G) (4.6a)

Np(1,2;G) = D(G) - nN{(1,2;G) + (n-1)N5(1,2;G) (4.6b)
and

N{1,2;G) = D(G) - N(1,2;G) (V o#0 or n) (4.6¢)

When G is a single ordinary edge e connecting 1 and 2, then Ng /Ny is equal to
the dual variable [t(8)]P of t(B) defined for the Z()) model in Alcaraz and Tsallis's paper

(1982). The dual vector transmissivity for the n—component cubic model is, therefore,

given by:
D ~ =~ l—nte(l)-l-(n-l)te(il) —2nl(e
[to(n)}™= Ny/D = Temt _(D+(n-De, D)~ © (4.7a)
and for o#0 or n
‘l—te(Z) '"(Ke+l‘e)

D ~
[t ()] = No/D = Tt _(D+(n-1)t _(2) =€ (4.7b)
which are respectively the variables xg and X, used in the model of Domany and Riedel
{(1979) specialised to the cumbic Hamiltonian. Combining eqs. (4.5) and (4.7) we get the

following alternative equation for two ordinary edges in parallel:
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tp(@P = (8P [t2(6)1P (V6) 4.8)

4.3 Replacement of a Subgraph by an Effective Edge

Let us consider a two-rooted graph G which is the union of two subgraphs H and L
which intersect at only two vertices, i and j. Furthermore both roots 1 and 2 belong to
H (see Fig 4) with the possibility that i and/or j are rooted. When both i and j are
rooted then L. and H are in parallel and we recover the results of §4.2.

In ZF it was proved, through the use of flows, that one can replace the subgraph L
by a single effective edge e having an effective flow vector equal to the flow vector of

L. This result can be stated for the cubic model as:

No(1,2;HUL) = N,(1,2;HUe; ) (4.9a)
with

Npfi,jser) = Ngf(i.jsL) (a = 0,1,2). (4.9b)

Ngof(i,j:ep) can be calculated through the SBCM or by performing the partial trace over
the internal vertices of L as mentioned in §2.2. Eq (4.9a) may be repeatedly applied as
long as there are further subgraphs which satisfy the above conditions on L. Also the
subgraphs replaced may themselves contain effective edges.

The replacement of a subgraph by an effective edge is an essential step in the
SBCM. The subgraphs to be replaced are considered to be of three types: (i) two
(effective) edges in series, (ii) two (effective) edges in parallel, (iii) subgraphs which are
not combinations of series and/or parallel (effective) edges. The latter replacement will be
called, as in ZF, a non-reducible subgraph replacement. The search for suitable subgraphs

is performed in this order.

4.4 The Effective Break—Collapse Equation

When no more subgraph replacements can be made, then one must apply the
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effective break—collapse equation. Combining eq. (3.16) of ZF with egs. (3.4) we get the

following effective break—collapse equation for the cubic model:

Ny(1,2;G) = [Deff ~ Noeff] No(1.2:G¢%) + NyegNo(1,2:GfY) +

+ (Noegr ~ Nyegf) No®¥ (1,24;G) (o = 0,1,2) (4.10a)

where
Nae"(l,2;f;G) = NQO(I,Z;f;G) + Na2(1,2;f;G) + Na4(1 2:6G) + ...

+ Npon-2(1,2:£:0) (4.10b)

In (4.10a), G¢® and GgY are respectively the deleted and contracted graphs obtained from
G by deleting a chosen (effective) edge f and contracting it (i.e. identifying the endpoints
of f in Gy%). Deggs, Niefr and Npggs are the components of the flow vector of the
(effective) edge f. Naﬁ(l »2;f;G) is the generating function for rooted mod-2n o—flows
having a fixed flow @ in the edge f. Such an edge will be called, as in ZF, a frozen
edge.

The components of the flow vectors for the deleted and contracted graphs are related

to N,g through (ZF):

o9 o . F.
N, (1,2;6) = N_(1,2;£;6) (4.11)
and
y Z2n-1
Na(1,2;Gf) - 6-2'0 Naﬁ(1,2;f;G). (4.12)

In other words, to delete an edge f is equivalent to having a frozen edge f having a zero
flow on it, and to contract f is equivalent to summing over all possible flows for this
edge.

Now using the relationship between N, and Nog (see eq. 3.10 of ZF) with

tf(B)=Ngefi particularised for the cubic model, namely
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Ng{1,2;G) = DegNyo(1,25f:G)
+ Nieff[Np1 (1,2:6:G) + Np3(1,2:£,G) + ... + Nygp-1(1,2::G))

+ Noeff[Np2(1,2:6:G) + Nog(1,2:6,G) + ... + Nppp2(1,26;G)]  (4.13)

and comparing it with eq. (4.10b), it follows that

No®V(1,2;f;G) = No(1,2;G) (4.14)

Niefrf = O
Doff = Naegf =1

The right hand side of eq. (4.14) is similar to the flow vector Nabc(l ,2;G3) for the
Z(4) model defined for the graph G with a chosen edge, f, “precollapsed” (Mariz et al
1985). However, for the Z(4) model, N P(1,2;G) is the generating function for rooted
mod-4 o—flows having value 0 or 2 on the edge f (see ZF), while here N,E¥(1,2;f;G) is
the generating function for rooted mod-2n c—flows having value 0,2,4,...,2n-2 on f. In

this condition f will be called an even frozen edge.

If fis an ordinary edge then eq. (4.10a) recovers a conjectured result (Tsallis, private
communication). |

In the SBCM, eq. (4.10a) is applied recursively so that the flow vector of G may be
equal to that with several even frozen edges. In this case, NofV satisfies an effective
break—collapse equation similar to eq (4.10a2). The latter equation is applied as many times
as needed to arrive at either graphs with just two vertices, or graphs with all edges even
frozen. For such graphs (which we will denote by Gg,) N(1,2;G.y) is the number of
rooted mod-2n o—flows with the constraint that the flow on all edges must be even
frozen. Such flows will be called, as in ZF, even roocted mod-2n o—flows. Following
along the same lines as in the proof of egs (4.2) of ZF, one can easily show that.

Ni(1;2;Gey) = 0 (4.15a)

N2(1,2;Gey) = n(OeV)y;5(Gey) (4.15b)

D(Gey) = n(Gev) (4.15¢)
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where ¢(Ggy) is the number of independent cycles in Ggy ¥12(Gey) is 1 if the roots are
connected and zero otherwise.

It is worthwhile stressing that, unlike the effective break—collapse equation for the
Z()\) model, eq. (4.10a) allows the calculation of the flow vector as a function of n rather
than for a specified value of n. In the case of the Z()\) model the application of the
break—collapse equation generates, besides the broken and collapsed graphs, a further A-3
graphs, while in the cubic model it generates only one further graph independently of the

value of n.

4.5 Particular Cases

Now let us show that our graph reduction equations reproduce correctly the expected

results in different particular cases of the cubic model.

(a) n =1 (Ising Model)

/KFor n =1, the vector transmissivity has only one component given by (eq. 3.3a):

te(l) = tanh K : (4.16)

which is the thermal transmissivity t, defined for the Ising model with coupling constant
Ke. Our respective graph reduction equations (4.1), (4.2), (4.3a) and (4.3b) reduce, for n
=1, to egs. (4.17a), (4.17b), (4.14b) and (4.14a} of PF3 particularised for a two-rooted
Ising cluster. From egs. (4.10b) and (4.11) it follows that for o=0,1:

ev L. - P
N, (1,2:£;6) N, (1,2;6;) (4.17)

n=1 n=1
which combined with eq. (4.10a) leads to the effective break—collapse equation (see eqs.

4.13 of PF3) for the Ising model.
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(b) n = 2 (symmetric Ashkin—Teller model)

Aharony (1977) showed that, for n = 2, the Hamiltonian of the cubic model (eq.
2.3) can be written in terms of two coupled Ising variables in the same form as that of
the symmetric Ashkin and Teller (1943) model. The Hamiltonian of the latter model is
identical to that for the Z(4) model described in eq. (1) of Mariz et al (1985) with
coupling constants K1 = K and K = L/2.

The components t.(1) and te(2) of the vector transmissivity (eq. 3.3) become, for
n=2, identical to the respective transmissivities t; and ty defined in egs. (2a) and (2b) of
Mariz et al (1985), where K1 = K and K5 = L/2.  One can easily see that our SBCM
graph reduction equations reduce, for n = 2, to those derived in ZF for the Z(4) model,

as it should be.

{c) Kg = L (2n-state Potts model)
The case Kg = L, corresponds to a 2n-state Potts model with .coupling constant 2nK,

(see Aharony 1977). In this case, egs. (3.3) become:

te(l) - te(Z) - e (4.18)
14(2n-1)e

which is the termal transmissivity (see eq. (1) of Tsallis and Levy 1981) of a 2n-state

Potts model. Using the fact that, for the Potts mode! (see eq. 2.12a)

N¢(1,2;G) = Np(1,2;G) = N(1,2;G) (4.19)

one can easily show that our graph reduction equations reproduce the expected results (see

PF3).

(d) Ke = 0 {n-state Potts model)

Setting K, = 0 in eq. (2.3} leads to the Hamiltonian of an n-state Potts model with
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coupling constant nl,, In this case egs. (3.3) become:

te(l) = 0 (4.20a)

-nL

1 - e
te(2) = = -t (4.20b)

-nL e
1 + (n-1) e

e

where t, is the thermal transmissivity of an n-state Potts model. From eq. (4.20a) and
(3.5a) we conclude that N_(1,2;G) becomes, in the considered case, the generating
function for even rooted mod-2n o—flows. From conservation of mod—2n flows it follows

then, similarly to eq. (4.15a), that:
N1{1.2;G) = 0. (4.21)

Furthermore, for o = 28, there is a bijective correspondence between the even rooted
mod-2n e—flows and the unrestricted rooted mod-n f-flows, obtained by replacing edges

with flow 22 by edges with flow 2 (2 = 0,1,...,n-1). Consequently, in this case:
N»(1,2;G) = N(1,2;G) (4.22)

where N(1,2;G) is the generating function for the rooted mod-n flows in the n-state Potts
model.

Combining relations (4.21), (4.22) and (4.12), one can easily prove that, for Kg = 0,
- all our graph reduction equations for D(G) and N5(1,2;G) reduce to those obtained for

the Potts model (PF3).
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5. SBCM FOR THE n—COMPONENT CUBIC MODEL

In this section we describe the modifications of the SBCM algorithm for the Potts
model (PF3) necessary for treating the cubic model. We also illustrate the SBCM for the

n—component cubic model using the Wheatstone bridge cluster,

51 The SBCM Algorithm,

The SBCM algorithm for the Potts model described in PF3 contains a recursive
procedure T which executes the operations of splitting into pieces, replacement of
(effective) edges in series or in parallel by a single effective edge, and the operation of
non-reducible subgraph replacement as long as possible. It then applies the effective
break—collapse equation. The use of this equation as well as the non-reducible subgraph
replacement require calls to T, thus the algorithm is recursive. The terminal condition for
the procedure arises when a graph with only two vertices is arrived at, in which case the
equivalent transmissivity is calculated by the parallel reduction equation. The SBCM
algorithm for the cubic model differs from that for the Potts model in the following

respects:

(i) Instead of associating to each edge e = [i,j] the numerator N, and denominator D¢
of the effective thermal transmissivity of e, we associate the components Ng(i,j;e),

Ny(i,j:e) and Nj(i,j;e) of the effective flow vector of the edge e.

(ii) The effective break—collapse equation must be replaced by eq. (4.10a) which demands
the calculation of N,®¥(1,2:f;G). This may be accomplished by replacing step (Ild4) of
the algorithm by a loop with a further call to T for the graph G with an even frozen
edge f. The series and parallel reduction equations work without modification provided

we set tp(0) = tg(2) = 1 and t§(1} = 0.
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(iii) In the selection of the (effective) edge to be deleted and contracted (step (IId1) of

the algorithm), this must now not be an even frozen edge.

(iv} A further terminal step must be added before the terminal condition mentioned in
(Ie) of PF3. This refers to a graph with more than two vertices, the edges of which are
all even frozen. In this case, there is no need for further applications of the effective

break—collapse equation since the flow vector of the current graph is given by egs. (4.15).

5.2 An Illustration of the SBCM

Now let us illustrate the SBCM by calculating the equivalent vector transmissivity of
the Wheatstone bridge graph G of Fig. 5. We consider only the case when all edges
have the same vector transmissivity t.

Since G has 5 edges, then it is necessary to apply the effective break—collapse
equation {eq. 4.10a) 5 times arriving thus at the graph Ggy of Fig. 5 whose edges are all
even frozen. Fig. 5 shows the “tree" of graphs generated in the SBCM where the edges
to be deleted and contracted were chosen in the following sequence €5, €, €1, €3 and
e4. For the sake of simplicity, the further graphs resulting from the replacement of edges
(which can be even frozen or not) in series and/or parallel by effective edges are not
included in Fig. 5. The branching into two graphs refers to the splitting of articulated
graphs, while the one into 3 graphs results from the application of the effective
break—collapse equation. The effective flow vectors for the terminal graphs shown in Fig,

5 are the following:

N,{(1,2;G11) = n (a= 0,2) {(5.1a)
N1(1,2;G11) = O (5.1b)
No(1,2;612) = Ny(1,2;Ggy) = n2 (@ =0,2) (5.2a)

N1(1,2;G12) = N1(1,2;Gey) = O (5.2b)
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Np(1,2:G10) = 1 + (n-1)t(2) (@ = 0,2)

N1(1,2;G19) = O

Ny(1,2;G9) = n + n(n-1)t(2) (e = 0,2)

N1(1,2;Gg) =~ n2t(1)

N, (1,2;Gg) = 1 + (n-1)t(2) (¢ = 0,2)

N1(1,2;Gg) = nt(1)

No(1,2;G7) = 1 + 2(n-1)t(2) + (n-1)2[t(2)])2 (a = 0,2)

N1(1,2;G7) = n2[t(1)]2

Ng(1,2;Gg) = 1 + (n-1)[t(2)]?

N1(1,2;Gg) = t(1) + (n-1)t(1)¢t(2)

N2(1,2;Gg) = 2t(2) + (n-2)[t(2)]2

Ng(1,2;Gs) = 1+(n-1)t(2) + (n-1)[t(2)]2 + (n-1)2[t(2)]3 +n2[t(1)]3

N1(1,2;Gs) = t(1)+2(n-1)t(1)t(2)+n[t (1)1 24n(n-1) [t (1)]2¢(2)+
+(n-1)2¢ (1) [t(2)]2

N2(1,2;C5) = 2t(2)+(3n-4)[t(2)]2+(n-1)(n-2) [t (2) }3+n2[t(1)]3

No(1,2;G4) ~ 1 + nf[t(1)]12 + (n-1)[t(2)]2

N1(1,2;G4) = 2t(1) + 2(n-1)t(1)t(2)

N2(1,2;Gg) = 2t(2) + n[t(1)12 + (n-2)[t(2)]2

Combining the above expressions together with the appropriate graph

reduction equations of section 4, we get that:

(s

(5.

(3.

(5

(5

(5

(s
(5

(5

(5.

(5.

(5.
(5.

(5.
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3b)

4a)

.4b)

.5a)

.5b)

.6a)
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.7a)

7b)
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.8a)

.8h)
.8c)

9a)
9b)

O¢)
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No(1,2;G1) = 1 + a[t(1)]4 + (n-1)[t(2)]4 (5.10a)
N1(1,2;G1) = 2{[t(1)]2 + (n-1)[t(1)]2[t(2)]2) (5.10b)
N2(1,2;61) = 2[t(2)12 + n{t(1)]4 + (n-2)[t(2))4 (5.10¢)
No(1,2;62) = {1+n[t(1)]2 + (n-1)[t(2)]12)2 (5.11a)
N1(1,2;G3) = 4[t(1)]12{14(n-1) t(2))2 (5.11b)
N3 (1,2;G9) = {2t(2) + n[t(1)]2 + (n-2)[t(2)]2)2 (5.11¢)

No®V(1,25e5;G3) = 1 + 2(n=1)[t(2)12 + n2[t(1)]4 + (n-1)2[¢(2)]4  (5.12a)
N18V(1,2;e5:63) = 2[¢(1)]2+4(n-1)[¢(1)]2t (2)+2(n-1)2[t(1)]2[¢(2)]2 (5.12b)

N28V(1,2;e5:G3) = 4[t(2)]2+4(n-2)[t(2)13+n2[t(1)]14+(n-2)2[t(2)]? (5.120)

Combining eqs. (5.10)-(5.12) with the effective break-collapse equation for

f = eg, namely (see eq. 4.10a) :
Np(1,2;G) = [1-t(2)]Np(1,2;G1) + t(1)NyK(1,2;Gy)

+ [t(2) - t(1)]N,®VY(1,2;e5;G3) (5.13)

we finally arrive at the flow vector of G:

Ng(1,2;6) = 1 + 2n{t(1)]13 + 2(n-1)[t(2)13 + n[t(1)]4 + (n-1)[t(2)]%

+ (n-1)(n-2)[t(2)]5 + 2n(n-1)[t(1)]3[¢(2)]2 + n(n-1) [t(1)]%t(2) (5.14a)

N1(1,2;6) = 2[t(1)]2 + 2[t(1)]3 + 6(n-1)[¢(1)]}2[t(2)]2
4+ 2(n=1)(n-2) [t (1)]12[t(2)13 + 4(n-1){t(1)13¢(2) + 2(n-1)2[t(1)]3[¢t(2)]2

(5.14b)

N2(1,2;C) = 2{t(2)}2 + 2[t(2)]3 + n[t(1)]4 + S(n-2) [t(2)]4 + 4n[t(1)])3t(2)

+ 2(n-2) [t(D3[6(2)]12 + n(r-1) [t(D]4[6(D)] + (n-2)(n-3)[t(2)]5  (5.14¢)
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Combining eqs. (5.14) with the definitions of t(1) and t(2) (eqs 3.3), one obtains an
equivalent vector transmissivity which has effective coupling constants Kegr and Legp equal
to the respective renormalised coupling constants K' and NL' of Tsallis et al's paper
(1988).

Notice that eqs. (5.14) recover, for all the particular cases considered in 84.5, the

expected results (see PF3 and Mariz et al 1985).

CONCLUSIONS

We have generalised to the n—component cubic mode! the subgraph break—collapse
method (SBCM) of the Potts model which we presented elsewhere. While in the latter
model the equivalent transmissivity was a scalar, it becomes a two-dimensional vector for
all values of n in the cubic model. The effective break—collapse equation involves also,
besides the broken and collapsed graphs which appear in the Potts model, a graph on
which the value of the flow is even. We have called the latter an even frozen edge.

Our graph reduction equations were derived from those we developed recently for the
Z{)) model. However, the SBCM algorithm for the cubic model differs from that for the
Z(2n) in the following aspects: (i) it contains graphs with even frozen edges instead of
frozen edges having fixed flows; (ii) its effective break—collapse equation generates only 3
flow vectors for all values of n instead of (2n-1); (iii) it gives the eguivalent vector
transmissivity as a function of n rather than for a fixed value of n; (iv) it requires more
iterations since the terminal condition refers to graphs with all edges even frozen rather
than a number of frozen edges equal to the number of independent cycles.

An even frozen edge is equal, for n = 2, to the precollapsed edge which appears in
the break—collapse method (BCM) for the Z(4) model (Mariz et al 1985). In this case,
our algorithm becomes similar to the BCM but with the important difference that we

include non-reducible subgraph replacements.
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FIGURE CAPTIONS

FIGURE 1 A graph G whose edges are given arbitrary directing, indicated by the
arrows. The roots 1 and 2 are represented by small circles and unrooted vertices by full
dots. An arbitrary spanning tree r of G and its corresponding path # between the roots
are shown in (b) and (c) respectively. By adding the flow &; (d) to unrooted flows one

generates rooted &—flows.

FIGURE 2  Examples of unrooted mod—6 flows (lst column) and its corresponding
rooted 1-flows (2nd column) and rooted 3-flows (3rd column) on the graph G of Fig. la.
These rooted flows were obtained from the unrooted ones by adding the flow ®; of Fig.
1d for 5 = 1 and 3 respectively, A missing edge indicates that the value of the flow on
it is zero. o represents the external flow in at the root 1 and out at the root 2. To
each edge with a non-~zero even (odd) value of flow is associated a transmissivity
t(2)(t(1)). Below each o—flow the corresponding term contributing to the generating

function N (1,2;G) is given.

FIGURE 3 Pictorial representations of two graphs Gy and G, which share an articulation
vertex i ((a) and (b)) or which ére in parallel (¢). In (b) the graphs Gq and G3 are in

series.

FIGURE 4 Pictorial representation of a two-reducible graph G = HUL with the roots 1

and 2 in H. Each subgraph is represented by a half-moon shape.

FIGURE 5 A schematic representation of the SBCM calculation of N(1,2;G) for the
Wheatstone Bridge graph. The further steps are not shown for graphs which are
combinations of series and/or parallel edges. The splitting of an articulated graph is
indicated by the sign X between the two subgraphs. The crossed line represents an even
frozen edge whose vector transmissivity is given by t(0) = t(2) = 1 and t{(1)- = 0. The

vector transmissivity associated to any other edge is t.
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