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The local and global properties of the Levi-Civita (LC) solutions coupled with an
electromagnetic �eld are studied and some limits to the vacuum LC solutions are given.
By doing such limits, the number of physically independent parameters and their physical
and geometrical interpretations are made clear. Sources for both the LC vacuum solutions
and the LC solutions coupled with an electromagnetic �eld are studied, and in particular
it is found that all the LC vacuum solutions with � � 0 can be produced by cylindrically
symmetric thin shells that satisfy all the energy conditions, weak, dominant, and strong.
When the electromagnetic �eld is present, the situation changes dramatically. In the
case of a purely magnetic �eld, all the solutions with � � 1=

p
8 or � � �1=

p
8 can be

produced by physically acceptable cylindrical thin shells, while in the case of a purely
electric �eld, no such shells are found for any value of �.
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I. INTRODUCTION

Spacetimes with cylindrical symmetry have been studied intensively in the past twenty years or so, in
the context of topological cosmic strings that may have formed in the early stages of the Universe [1], and
in gravitational collapse [2]. Recently, the physical and geometrical interpretation of the Levi-Civita (LC)
vacuum solutions, which represent the most general cylindrical static vacuum spacetimes, has attracted
much attention [3]. In particular, it has been shown, among other things, that the LC vacuum solutions
can be produced by cylindrically symmetric sources, which satisfy all the energy conditions, weak, strong,
and dominant [4], only for 0 � � � 1 [5], where � is one of the two parameters appearing in the LC
vacuum solutions, which is related to, but in general not equal to the mass per unity length [3]. It
has been also shown that when the LC solutions coupled with a cosmological constant, the spacetime
structures are dramatically changed, and in some cases they give rise to black hole structures [6].
In this paper, our purpose is two fold. First, as we mentioned above, so far, physically acceptable

and cylindrically symmetric sources for the LC vacuum solutions are found only for 0 � � � 1. Since
� = 1 does not represent any typical value in these solutions [5], it has troubled us for a long time
why the solutions with � > 1 cannot be realized by physically acceptable cylindrical sources. In this
paper, we shall show that all the LC vacuum solutions can be produced by cylindrically symmetric thin
shells that satisfy all the energy conditions, as long as � � 0. The key observation that leads to such a
conclusion is that, as � ! +1, the solutions become (locally) Minkowski, again, but with x2 becoming
the angular coordinate. Thus, it is very plausible that, as � increases to a certain value, the axial and
angular coordinates may change their roles. By constructing cylindrically symmetric sources, in this
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paper we shall con�rm this claim, and argue that the change should happen at � = 1=2, although in the
range 1=4 � � � 1, physically acceptable sources for both of the two identi�cations are found. Thus, the
interpretation of all the LC vacuum solutions with � � 0 as representing cylindrically symmetric vacuum
spacetimes is physically acceptable. It is interesting to note that several authors already speculated that
as � increases to the value � = 1=2, the angular coordinate should be straighted out to in�nite, so that the
resultant spacetimes become plane symmetric [7]. Indeed, we have shown that the solution with � = 1=2
can be produced by a massive plane with an uniform distribution of matter [8], while Philbin has shown
that all the solutions with j�j > 1=2 can be produced by massive planes [9]. However, as far as we know,
this is the �rst time to be argued that, when � > 1=2, the two spacelike coordinates x2 and x3 change
their roles, and show that the LC vacuum solutions can be produced by cylindrical sources for � � 0,
after such an exchange of coordinates is taken place. The physics that provokes such an exchange has not
worked out, yet. Here, we also extend our studies to the LC solutions coupled with electromagnetic �elds
and study the e�ects of the electromagnetic �elds on the local and global structure of the spacetimes.
The paper is organized as follows: In Sec. II, we shall study the main properties of the LC solutions

when coupled with an electromagnetic �eld, and take their vacuum limits. By doing so, we can �nd out
the physically independent parameters and their physical and geometrical interpretations. In Sec. III, we
shall consider cylindrically symmetric thin shells that produce the spacetimes described by the LC vacuum
solutions or by the LC solutions coupled with an electromagnetic �eld. We use Israel's method [10] to
obtain the general expression for the surface energy-momentum tensor of a thin shell, which separates
two arbitrary cylindrical static regions. Then we apply these general formulae to the case where the shell
separates a Minkowski-like internal region from an external region described by either the LC vacuum
solutions or the LC solutions coupled with an electromagnetic �eld. Imposing the energy conditions,
we show that only for some particular choices of the free parameters appearing in the solutions these
conditions are ful�lled. The paper is closed with Sec. IV, where our main conclusions are presented.

II. LEVI-CIVITA SOLUTIONS COUPLED WITH ELECTROMAGNETIC FIELDS

The static spacetimes with cylindrical symmetry are described by the metric [11]

ds2 = f(R)dT 2 � g(R)dR2 � h(R)
�
dx2
�2 � l(R)

�
dx3
�2
; (1)

where T and R are, respectively, the timelike and radial coordinate. In general, the spacetime possesses
three Killing vectors, ��(0) = ��0 ; �

�
(2) = ��2 , and ��(3) = ��3 , where fx�g = fT; R; x2; x3g. Clearly, the

coordinate transformations

T = a ~T ; R = R( ~R); x2 = �~x2; x3 = C�1~x3; (2)

preserve the form of metric, where a; � and C are arbitrary constants, and R( ~R) is an arbitrary function

of the new radial coordinate ~R. A spacetime with cylindrical symmetry must obey several conditions
[12,13]:
(i) The existence of an axially symmetric axis: The spacetime that has an axially symmetric axis is

assured by the condition,

jj@'jj = jg''j ! O(R2); (3)

as R ! 0+, where we had chosen the radial coordinate such that the axis is located at R = 0, and '
denotes the angular coordinate with the hypersurfaces ' = 0 and ' = 2� being identical. Since both ��(2)
and ��(3) are spacelike Killing vectors, ' can be chosen to be either x2 or x3. This ambiguity always rises,

since the Einstein �eld equations are di�erential equations, and consequently do not determine the global
topology of the spacetime. This observation will be crucial in understanding the LC vacuum solutions
to be discussed in Secs. II and III below. However, once ' is identi�ed, the rescaling transformation of
Eq.(2) for ',

' =
~'

D
; (4)
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maps the two identi�ed hypersurfaces ' = 0 and ' = 2�, respectively, to ~' = 0 and ~' = 2�D. Conse-
quently, it results in an angular defect in the coordinates fT; R; ~'; zg, given by

�~' = 2�(1�D): (5)

Thus, the coordinate transformation (4) in general yields physically di�erent solutions. In particular,
when the spacetime outside the axis is locally Minkowski, this angular defect can be associated with a
cosmic string located on the axis [1].
(ii) The elementary atness on the axis: This condition requires that the spacetime be locally at on

the axis, which in the present case can be expressed as

X;�X;�g
��

4X
=

g2'';R
4gRRg''

! 1; (6)

as R ! 0+, where X is given by X = jj@'jj = jg''j, and ( );R � @( )=@R. Note that solutions that
fail to satisfy this condition are sometimes accepted since the appearance of spacetime singularities on
the axis can be considered as representing the existence of some kind of sources [3]. For example, when
the left-hand side of Eq.(6) approaches a �nite constant, the singularity on the axis can be related to a
cosmic string [1].
(iii) No closed timelike curves: In the cylindrical spacetimes, closed timelike curves (CTCs) are rather

easily introduced [4]. While the physics of the CTCs is not yet clear [14], we shall not consider this
possibility in this paper and simply require that

g'' < 0; (7)

hold in all the region of the spacetime considered.
(iv) Asymptotical atness: When the sources are con�ned within a �nite region in the radial direction,

one usually also requires that the spacetime be asymptotically at as R ! +1, where R denotes the
geometric proper distance from the axis to a referred point in the radial direction.
For an electromagnetic �eld A�(R), the energy-momentum tensor (EMT) is given by

T�� =
2

�

�
F��F��g

�� +
1

4
g��F��F

��

�
; (8)

where �(� 8�G=c4) is the Einstein gravitational coupling constant, and

F�� � A�;� � A�;�: (9)

Because of the symmetry, from Eq.(9) we �nd that

F02 = F03 = F23 = 0: (10)

On the other hand, when the electromagnetic �eld is source-free, we have

F��
;� = F 1�

;R +
1

2
[ln(fghl)];R F

1� = 0; (11)

where the semicolon \;" denotes the covariant derivative. Clearly, the above equation has the general
solution

F 1� =
B�

(fghl)1=2
; (� = 0; 1; 2; 3); (12)

where B� are the integration constants with B1 = 0. Substituting Eqs.(10) and (12) into Eq.(8) we �nd
that

T�� =
1

�fhl

n
f
h
f
�
B0
�2

+ h
�
B2
�2

+ l
�
B3
�2i

�0��
0
� � g

h
f
�
B0
�2 � h

�
B2
�2 � l

�
B3
�2i

�1��
1
�

+h
h
f
�
B0
�2

+ h
�
B2
�2 � l

�
B3
�2i

�2��
2
� + l

h
f
�
B0
�2 � h

�
B2
�2

+ l
�
B3
�2i

�3��
3
�

�2B0B2fh
�
�0��

2
� + �2��

0
�

� � 2B0B3fl
�
�0��

3
� + �3��

0
�

�
+ 2B2B3hl

�
�2��

3
� + �3��

2
�

�	
: (13)
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When the electromagnetic �eld is the only source for the Einstein �eld equations, G�� = �T�� , we �nd
that the components T02; T03 and T23 have to vanish, because the Einstein tensor G�� for the metric (1)
has no non-diagonal terms. The vanishing of these terms yields,

B0B2 = 0; B0B3 = 0; B2B3 = 0; (14)

which have four di�erent solutions,

A) B0 = B2 = B3 = 0; B) B2 6= 0; B0 = B3 = 0;

C) B3 6= 0; B0 = B2 = 0; D) B0 6= 0; B2 = B3 = 0: (15)

In the following, let us consider them separately.

A. B0 = B2 = B3 = 0

In this case, the electromagnetic �eld vanishes and the corresponding solution is the LC vacuum
solution, given by [11]

ds2 = a2R4�dT 2 �R4�(2��1)
h
dR2 + �2

�
dx2
�2i� C�2R2(1�2�)

�
dx3
�2
; (16)

where a; �; � and C are the integration constants. Without loss of generality, one can always make a = 1
by rescaling the timelike coordinate, ~T = aT . In the following, we shall assume that this is always the
case. The physical meaning of � and C depend on the choice of the angular coordinate '. For example,
if ' is chosen as x3, then C will be related to the angular defect parameter D, and � has no physical
meaning and can be transformed away by the rescaling ~x2 = �x2. However, if ' is chosen as x2, then
the roles of � and C will be exchanged. The parameter � is related, but not equal, to the mass per
unit length [3], and physically acceptable sources have been found so far only for 0 � � � 1 [5]. When
� = 0; 1=2, the corresponding solutions are at in the region 0 < R < +1. It was shown that in the
case � = 1=2, the (x2; x3)-plane can be extended to in�nity, �1 < x2; x3 < +1. Then, the resultant
spacetime has plane symmetry and can be produced by a massive plane with uniform energy density [8].
Thus, in the vacuum case there are only two physically essential parameters, one is related to the mass
per unit length, and the other is related to the angular defects.
Making the coordinate transformations,

~R =

�
(2� � 1)�2(2��1)2=AR(2��1)2; � 6= 1=2,
lnR; � = 1=2,

(17)

we �nd that the metric (16) can be written as,

ds2 =

8<
:

~R4�=(2��1)2
�
d ~T 2 � d ~R2

�
� ~�2 ~R4�=(2��1)

�
dx2
�2 � ~C�2 ~R2=(1�2�)

�
dx3
�2
; � 6= 1=2,

e2
~R
�
dT 2 � d ~R2

�
� �2

�
dx2
�2 �C�2

�
dx3
�2
; � = 1=2,

(18)

where A � 4�2 � 2� + 1, and

~T � (2� � 1)4�=AT; ~� � �(2� � 1)4�(2��1)=A; ~C � C(2� � 1)2(2��1)=A: (19)

It is interesting to note that, in the limit � ! 0, the metric becomes locally Minkowski with x3 as
the angular coordinate and x2 the axial coordinate, while as � ! +1, the metric becomes also locally
Minkowski but now with x2 as the angular coordinate and x3 the axial coordinate. This suggests that
there may exist a critical value �c, when � < �c, x

3 should be taken as the angular coordinate, and when
� > �c, x

2 should be taken as the coordinate. The analysis given below will con�rm this speculation.
To study the spacetimes for the �rst three cases in Eq.(15), where the electromagnetic �eld is di�erent

from zero, let us consider them separately.
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B. B2 6= 0; B0 = B3 = 0

In this case, since the components F0� vanish, the corresponding electromagnetic �eld is purely mag-
netic and produced by a current along the axis x2 [15]. The corresponding EMT is given by

T�� =

�
B2
�2

�fl

�
f�0��

0
� + g�1��

1
� + h�2��

2
� � l�3��

3
�

�
: (20)

Solving the corresponding Einstein �eld equations, we �nd that the solutions are given by

f = g = R2m2

G2; h =
�2

G2
; l =

R2G2

C2
;

F�� =
CB2

�R2m2+1G2
(��1 �

�
2 � ��2 �

�
1 ) ; B2 = �

�
4c1c2m2

C2

�1=2

; (21)

where G is given by

G � c1R
m + c2R

�m; (22)

and �; C; c1; c2 and m are integration constants. Since F�� is real, we must have c1c2 � 0 in the present
case. These solutions are actually Witten's case 1 solutions [16].
When m = 0, the electromagnetic �eld vanishes, and the corresponding spacetime is locally Minkowski,

ds2 = G2

�
dT 2 � dR2 � �2

G4

�
dx2
�2 � R2

C2

�
dx3
�2�

; (m = 0); (23)

where G = c1 + c2. Clearly, now the angular coordinate ' should be chosen to be x3, and the axial
coordinate z to be x2. Then, the constant C is related to the angular defect of the spacetime [1], and the
constant �2=A4 can be made disappear by rescaling x2, while the conformal factor A2 can be transformed
away by conformal transformations. Thus, in the above metric the only physically essential parameter is
C.
Case B:1) c1 = 0; c2 6= 0. In this case, we �nd F�� = 0 and the metric becomes,

ds2 = c22

�
R2m(m�1)(dT 2 � dR2) � �2R2m

c42

�
dx2
�2 � R2(1�m)

C2

�
dx3
�2�

; (c1 = 0): (24)

Thus, without loss of generality we can set c2 = 1. Then, comparing Eq.(24) with Eq.(18), we �nd that

m =
2�

2� � 1
; (c1 = 0; � 6= 1=2): (25)

It is interesting to note that in this case there is no direct limit of the LC solution with � = 1=2.
Case B:2) c1 6= 0; c2 = 0. In this case we have F�� = 0, too, and the corresponding metric and the

constant m can be obtained from Eqs.(24) and (25) by replacing c2 by c1 and changing the sign of m,
i.e.,

ds2 = c21

�
R2m(m+1)(dT 2 � dR2) � �2R�2m

c41

�
dx2
�2 � R2(1+m)

C2

�
dx3
�2�

; (c2 = 0); (26)

and

m = � 2�

2� � 1
; (c2 = 0; � 6= 1=2): (27)

Case B:3) c1c2 6= 0. In this case only one of the two parameters c1 and c2 is physically essential [17]. As
a matter of fact, de�ning

c1 = �m; c2 =


�m
; (28)
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where � > 0, we �nd that the corresponding metric takes the form

ds2 = 2
�
R2m2

G+
2
�
dT 2 � dR2

�� ��2

G+
2

�
dx2
�2 � R2G+

2

C2

�
dx3
�2�

; (c1c2 6= 0); (29)

where

G+ � (�R)m + (�R)�m ; �� � �

2
: (30)

Then, by a trivial conformal transformation, �g�� = 2g��, we can set  = 1. In the following we shall
assume that this is always the case whenever it is applicable. Therefore, when the LC solutions are
coupled with electromagnetic �elds they have only three physically independent parameters.
To study the singularity behavior of the solutions, we �nd that

F � F��F�� =
8m2

R2(m2+1)G4
+

;

I � R���R��� =
16m2

R4(m2+1)G8
+

��
(m + 1)2 [m(m + 1) + 1] (�R)4m + (m� 1)2 [m(m � 1) + 1] (�R)�4m

�6m(m + 1)2(�R)2m + 6m(m � 1)2(�R)�2m � 2(m4 � 12m2 + 1)
	
; (31)

from which we �nd that

F =

�1; m 6= �1
8�4; m = �1 ; I =

�1; m 6= �1
�320�8; m = �1 ; (32)

as R ! 0+, and F and I all go to zero as R ! +1. One can show that all the fourteen scalars built
from the Riemann tensor have similar behavior. Therefore, all these solutions are asymptotically at as
R ! +1 and singular at R = 0, except for the ones with m = �1. The singularities at R = 0 are
timelike and naked. The corresponding Penrose diagram for the solutions with m 6= �1 is given by Fig.
1(a).
Case B:3:a) m = +1. When m = +1 the metric (29) takes the form

ds2 = ��2

(�
1 + (�R)2

�2 �
dT 2 � dR2 � dz2

�� R2

[1 + (�R)2]2
d'2

)
; (33)

where

z � x3

C
; ' � ��2x2: (34)

Obviously, this solution is locally at on the axis R = 0, asymptotically at as R! +1, and free of any
kind of spacetime singularities in the whole spacetime. Thus, in this case the spacetime is geodesically
complete and the corresponding Penrose diagram is given by Fig. 1(a), too, but now the vertical line
R = 0 is free of spacetime singularities. Its applications to Cosmology were �rst studied by Melvin [18]
and Thorne [19].
Case B:3:b) m = �1. The metric for m = �1 can be obtained from Eqs.(33) and (34) by replacing �

by 1=�.

C. B3 6= 0; B0 = B2 = 0

In this case, the only non-vanishing component of F�� is F 13, and the corresponding electromagnetic
�eld is purely magnetic and produced by a current along the axis x3. The EMT given by Eq.(13) now
becomes
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T�� =

�
B3
�2

�fh

�
f�0��

0
� + g�1��

1
� � h�2��

2
� + l�3��

3
�

�
: (35)

Solving the corresponding Einstein �eld equations, we �nd that the solutions are given by

f = g = R2m2

G2; h =
R2G2

C2
; l =

�2

G2
;

F�� =
CB3

�R2m2+1G2
(��1 �

�
3 � ��3 �

�
1 ) ; B3 = �

�
4c1c2m2

C2

�1=2

; (36)

where G is still given by Eq.(22). These solutions are actually Witten's Case 2 solutions [16]. Comparing
Eq.(21) with Eq.(36), we �nd that if we exchange the two coordinates x2 and x3, we shall get one solution
from the other. Hence, the physical and geometrical properties of these solutions can be obtained from
the ones given by Eq.(21) by exchanging the two coordinates x2 and x3.

D. B0 6= 0; B2 = B3 = 0

In this case, the only non-vanishing component of F�� is F 01, and the corresponding electromagnetic
�eld is purely electric and produced by an axial charge distribution. The EMT given by Eq.(13) now
becomes

T�� =

�
B0
�2

�hl

�
f�0��

0
� � g�1��

1
� + h�2��

2
� + l�3��

3
�

�
; (37)

and the corresponding solutions are given by

f = G�2; l =
R2G2

C2
; g = ��2h = R2m2

G2;

F�� =
CB0

�R2m2+1G2
(��0 �

�
1 � ��1 �

�
0 ) ; B0 = �

��4�2c1c2m2

C2

�1=2

: (38)

Clearly, to have F�� be real, now we must require c1c2 � 0. The above solutions are Witten's Case 3
solutions [16]. This class of solutions have been studied by several authors using di�erent forms of metric
[20]. The form used above is the same as in [11].
Case D.1) c1c2 6= 0. In this case, the solutions have three physically independent parameters, too.

In fact, introducing two parameters � and  via the relations,

c1 = �m; c2 = � 

�m
; (39)

where � > 0, we �nd that the corresponding metric takes the form

ds2 = 2

"
G�

�2

�
dT

2

�2

�R2m2

G2
�dR

2 � �2R2m2

G2
�

�
dx2
�2 � R2G�

2

C2

�
dx3
�2#

; (c1c2 6= 0); (40)

where

G� � (�R)m � (�R)�m : (41)

Similarly, the constant  can be transformed away by a constant conformal transformation. Therefore,
without loss of generality, in the followingwe shall set  = 1. Then, it can be shown that the corresponding
quantities F and I are given by

F � F��F�� = � 8m2

R2(m2+1)G4
�

;

I � R���R��� =
16m2

R4(m2+1)G8
�

��
(m + 1)2 [m(m + 1) + 1] (�R)4m + (m� 1)2 [m(m � 1) + 1] (�R)�4m

+6m(m + 1)2(�R)2m � 6m(m � 1)2(�R)�2m � 2(m4 � 12m2 + 1)
	
; (42)
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from which we �nd that

F =

��1; m 6= �1
�8�4; m = �1 ; I =

�1; m 6= �1
�320�8; m = �1 ; (43)

as R! 0+, and F and I all go to zero as R! +1. Therefore, all these solutions are asymptotically at
as R ! +1 and singular at R = 0, except for the ones with m = �1. In addition to the singularities
at R = 0, the solutions are also singular at R = ��1 where G� = 0. Thus, when m 6= �1, the semi-
axis R � 0 is divided into two parts, 0 � R � ��1 and ��1 � R < +1, by the singularities located,
respectively, at R = 0 and R = ��1. While the physics of the spacetime in the region 0 � R � ��1 is
not clear, one can introduce a new coordinate R0 by R0 = R� ��1 in the region ��1 � R < +1, so the
solutions are singular at R0 = 0 and asymptotically at as R0 ! +1. The spacetime is maximal in this
region and the corresponding Penrose diagram is given by Fig. 1(a).
Case D.1.a) m = +1. When m = 1, the metric takes the form,

ds2 =
(�R)2

[1� (�R)2]2
dT 2 �

�
1� (�R)2

�2
�2

h
dR2 + �2

�
dx2
�2

+ C�2
�
dx3
�2i

; (c1c2 6= 0;m = 1); (44)

Introducing a new coordinate r via the relation

r =
1

2

�
��2 � R2

�
; (45)

we �nd that the metric takes the form

ds2 = 2�2
n
f(r)dt2 � f�1(r)dr2 � 2r2

h
�2
�
dx2
�2

+ C�2
�
dx3
�2io

; (c1c2 6= 0;m = 1); (46)

where t = (�2T )=2 and

f(r) � r0 � r

r2
; (47)

with r0 � ��2=2. From Eq.(45) we can see that the spacetime singularity at R = ��1 is mapped to
r = 0, and the hypersurface R = 0 is mapped to r = r0. The region ��1 � R < +1 is mapped into the
region r � 0. In this region the singularity at r = 0 is naked and timelike, and the corresponding Penrose
diagram is given by Fig. 1(a). The region 0 � R � ��1 is mapped into 0 � r � r0, which will be referred
as to Region I. The metric is singular at r0. As showed above, this singularity is not a curvature one,
and we need to extend the spacetime beyond it. Since the part

r2
h
�2
�
dx2
�2

+C�2
�
dx3
�2i

;

is regular across r = r0, we need to consider the extension only for the part

d�2 = f(r)dt2 � f�1(r)dr2; (48)

which is similar to the Schwarzschild solution with spherical symmetry [4]. Following the same procedure
for the extension of the Schwarzschild solution, we �nd that the corresponding Penrose diagram now is
given by Fig. 1(b). In this diagram there are three extended regions, I0; II and II0, where Region I0 is
symmetric with Region I, while Region II0 is symmetric with Region II, where in Region II we have
r0 < r < +1. The spacetime is asymptotically at as r! +1. The nature of the hypersurfaces r = r0,
however, is di�erent from r = 2m in the Schwarzschild case, representing now Cauchy horizons.
Case D.1.b) m = �1. When m = �1 the solution can be obtained from Eq.(46) by replacing � by

�1=�.
Case D.2) c1 = 0; c2 6= 0. In this case , the corresponding electromagnetic �eld vanishes, and the

solutions reduce to

ds2 = c22

(
R2m

�
dT

c22

�2

� R2m(m�1)
h
dR2 + �2

�
dx2
�2i�C�2R2(1�m)

�
dx3
�2)

; (c1 = 0): (49)
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Comparing it with Eq.(16) we �nd that

m = 2�; (c1 = 0): (50)

Case D.3) c1 6= 0; c2 = 0. In this case, the corresponding solutions can be obtained from Eq.(49) by
replacing c2 by c1. Then, the relation of m with � is now given by

m = �2�; (c2 = 0): (51)

III. SOURCES OF THE LC SOLUTIONS WHEN COUPLED WITH ELECTROMAGNETIC

FIELDS

As showed in the last section, all the solutions are singular at the axis, except for the cases m =
�1. These singularities are usually considered as representing sources. However, these sources to be
physically acceptable have to satisfy certain conditions, such as, the weak, dominant, and=or strong
energy conditions [4].
In this paper, we shall consider shell-like sources for the spacetimes studied in Section II. Assume

that the shell, located on the hypersurface �, divides the whole spacetime into two regions, V �. Let V +

denote the region outside the shell, and V � denote the region inside the shell. In V +, the metric takes
the form

ds2+ = f+(R)dT 2 � g+(R)dR2 � h+(R)
�
dx2
�2 � l+(R)

�
dx3
�2
; (R � R0); (52)

where fx+�g = fT; R; x2; x3g, and R = R0 = Const: is the location of the shell in the coordinates x+�.
In V �, the metric takes the form

ds2� = f�(r)dt2 � g�(r)dr2 � h�(r)
�
dx2
�2 � l�(r)

�
dx3
�2
; (r � r0); (53)

where fx��g = ft; r; x2; x3g, and the hypersurface r = r0 = Const: is the location of the shell in the
coordinates x��. On the shell, the intrinsic coordinates will be chosen as f�ag = f�; x2; x3g; (a = 1; 2; 3),
where � denotes the proper time of the shell. In terms of �a, the metric on the shell takes the form

ds2
��
�
= abd�

ad�b = d�2 � h
�
dx2
�2 � l

�
dx3
�2
; (54)

where ab denotes the induced metric on the hypersurface. The �rst junction condition requires that the
metrics in both sides of the shell reduce to the same metric (54), that is,�

f+(R0)
�1=2

dT =
�
f�(r0)

�1=2
dt = d�;

h+(R0) = h�(r0) = h; l+(R0) = l�(r0) = l: (55)

Note that in writing the above expressions, we have chosen, without loss of generality, dT; dt and d� to
have the same sign. The normal vector to the hypersurface � is given in V + and V �, respectively, by

n+� =
�
g+(R0)

�1=2
�R� ; n�� =

�
g�(r0)

�1=2
�r�: (56)

On the hypersurface �, let us introduce the vectors, e��(a) , de�ned by e��(a) � @x��=@�a, we �nd that

e+�(1) =
�
f+(R0)

��1=2
��T ; e+�(2) = ��2 ; e+�(3) = ��3 ;

e��(1) =
�
f�(r0)

��1=2
��t ; e��(2) = ��2 ; e��(3) = ��3 : (57)

Then, the extrinsic curvatures K�
ab, de�ned by 1

1Note that in this paper the de�nition for the extrinsic curvature tensor is the same as that given in [21] but
di�erent from Israel's by a sign [10].
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K�
ab = �e��(a) e

��
(b)

�
@2n��
@�a@�b

� �����n
�
�

�
; (58)

have the following non-vanishing components,

K+
11 =

f+;R
2f+(g+)1=2

; K+
22 = �

h+;R
2(g+)1=2

; K+
33 = �

l+;R
2(g+)1=2

;

K�
11 =

f�;r
2f�(g�)1=2

; K�
22 = �

h�;r
2(g�)1=2

; K�
33 = �

l�;r
2(g�)1=2

: (59)

In terms of K�
ab, the surface energy-momentum tensor, �ab, is given by [10],

�ab =
1

�
f[Kab]� ab [K]g ; (60)

where [Kab] � K+
ab �K�

ab and [K] � ab [Kab]. Substituting Eq.(59) into Eq.(60) we �nd that �ab can be
written in the form,

�ab = �wawb + p2e
a
(2)e

b
(2) + p3e

a
(3)e

b
(3); (61)

where wa = �a� ; e
a
(2) = h�1=2�a2 ; e

a
(3) = l�1=2�a3 , and

� = � 1

2�

(
1

h

"
h+;R

(g+)1=2
� h�;r

(g�)1=2

#
+

1

l

"
l+;R

(g+)1=2
� l�;r

(g�)1=2

#)
;

p2 =
1

2�

("
f+;R

f+ (g+)1=2
� f�;r

f� (g�)1=2

#
+

1

l

"
l+;R

(g+)1=2
� l�;r

(g�)1=2

#)
;

p3 =
1

2�

("
f+;R

f+ (g+)1=2
� f�;r

f� (g�)1=2

#
+

1

h

"
h+;R

(g+)1=2
� h�;r

(g�)1=2

#)
: (62)

Thus, the surface EMT given above can be considered as representing a uid with its velocity wa, energy
density � and pressures p2 and p3 in the two principal directions ea(2) and ea(3), respectively, provided that

the uid satis�es some energy conditions [4].
Once we have the general formulae for the matching of two static cylindrical regions, let us consider

some speci�c models, where the solutions given in the last section are taken as valid only in the region
V + de�ned above. To make sure that the spacetimes indeed possess cylindrical symmetry, and that
the LC vacuum solutions or the LC solutions coupled with an electromagnetic �eld are produced by a
cylindrically symmetric source, in the region V � we shall choose the metric as that of Minkowski,

ds2� = dt2 � dr2 � dz2 � r2d'2; (r � r0); (63)

so that the spacetime and its symmetry inside the shell is well de�ned and free of any kind of spacetime
singularities on the axis r = 0. Obviously, for such a matching a matter shell in general appears on the
hypersurface r = r0. Since inside the shell, the spacetime is at and free of any kind of sources, the
spacetime outside the shell is produced solely by the shell. To further study the problem, let us consider
the four cases de�ned by Eq.(15) separately.

A. B0 = B2 = B3 = 0

In this case, the spacetime outside the shell is described by the LC solutions, which are given by Eq.(16)
or (18). Without loss of generality, in the following we shall consider only the metric of Eq.(16), which
is valid for any �.
Because of the ambiguity of specifying the angular and axial coordinates, let us �rst consider the

possible identi�cation z = x2 and ' = x3. In this case the �rst junction condition of Eq.(55) yields
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� = R
�2�(2��1)
0 ; C =

R1�2�
0

r0
: (64)

Then, from Eq.(62) we �nd that

� =
1

�

�
1

r0
� (2� � 1)2

RA
0

�
;

pz =
1

�

�
1

RA
0

� 1

r0

�
; p' =

4�2

�RA
0

: (65)

From the above expressions, it can be shown that the weak and strong energy conditions will be ful�lled
when

r0 � RA
0

(2� � 1)2
; 0 � � � 1; (66)

while the dominant energy condition requires

r0 �
8<
:

RA
0

(2��1)2+1 ; 0 � � � 1=3
RA
0

(2��1)2+4�2 ; � > 1=3
; 0 � � � 1: (67)

Clearly, by properly choosing the constant r0 the three energy conditions, weak, dominant and strong,
can be all satis�ed, provided that

0 � � � 1: (68)

That is, the solutions of Eq.(16) with z = x2 and ' = x3 can be produced by physically reasonable
sources for 0 � � � 1. This is consistent with the conclusions obtained in [5].
When � is larger, the two coordinates x2 and x3 change the roles, as we pointed in the last section. In

the following, we shall show that this is indeed the case. Choosing z = x3 and ' = x2 in Eq.(16) we �nd
that the �rst junction condition of Eq.(55) becomes

� =
r0

R
2�(2��1)
0

; C = R1�2�
0 ; (69)

while Eq.(62) yields

� =
1

�

�
1

r0
� (2� � 1)2

RA
0

�
;

pz =
1

�RA
0

; p' =
1

�

�
4�2

RA
0

� 1

r0

�
: (70)

From these expressions, it can be shown that the weak energy condition will be satis�ed when

r0 � RA
0

(2� � 1)2
; � � 1

4
; (71)

and that the dominant energy condition will be satis�ed when

r0 �
8<
:

RA
0

(2��1)2+1 ; 1=4 � � � 3=4
RA
0

4�(2��1)+1
; � > 3=4

; � � 1

4
; (72)

while the strong energy condition is ful�lled when Eq.(66) holds. Thus, by properly choosing the constant
r0 the three energy conditions can be all satis�ed, for

� � 1

4
: (73)
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That is, the solutions of Eq.(16) with z = x3 and ' = x2 are physically acceptable in the sense that they
can be produced by cylindrical matter shells that satisfy all the three energy conditions, provided that
� � 1=4.
This con�rms our early claim that when � is large, the coordinate x2 should be taken as the angular

coordinate. From Eqs.(68) and (73) we can see that there exists a common range 1=4 � � � 1, in which
the angular coordinate can be chosen as either x2 or x3. For each of such choices, the solutions can be
produced by cylindrical matter shells that satisfy all the three energy conditions. However, considering
Eq.(3), we can see that when � > 1=2 the coordinate x2 is more likely to play the role of the angular
coordinate, while when � < 1=2 the coordinate x3 is more likely. When � = 1=2, the corresponding
solution becomes (locally) Minkowski and the metric coe�cients g22 and g33 are constant. In [8] it was
shown that it can be considered as representing the gravitational �eld produced by a massive plane with
a uniform matter distribution. In this case, the ranges of the two coordinates x2 and x3 were extended
to �1 < x2; x3 < +1. The above considerations, on the other hand, show that the same solution can
be also considered as representing the gravitational �eld produced by a cylindrical shell that satis�es all
the energy conditions, but in the latter case one has to identify the hypersurface x2 = 0 (x3 = 0) with
the one x2 = 2� (x3 = 2�).
In any case, the above analysis shows clearly that all the LC solutions with � � 0 are physically

acceptable, in the sense that they can be produced by cylindrically symmetric sources that satisfy all the
three energy conditions [4].
We would like to note that if the form of the metric Eq.(18) of the LC solutions is used as the exterior

of the shell, we shall obtain the same conclusions, that is, for the solutions to be produced by a cylindrical
shell that satis�es all the three energy conditions, we have to choose x3 to be the angular coordinate '
for 0 � � � 1, and to choose x2 to be the angular coordinate for � � 1=4.

B. B2 6= 0; B0 = B3 = 0

In this case, the metric outside the shell is given by Eqs.(29) and (30) with  = 1. In the following, let
us �rst consider the case where x2 = z and x3 = '. Then, we can see that the �rst junction conditions
Eq.(55) require

� = G+(R0); C =
R0G+(R0)

r0
; (74)

while Eq.(62) gives

� =
1

�

 
1

r0
� 2

�R1+m2

0

!
; p' =

m2

��R1+m2

0

;

pz =
1

�

(
2m [(�R0)

m � (�R0)
�m]

�2R1+m2

0

+
1 +m2

�R1+m2

0

� 1

r0

)
: (75)

From the above expressions we can show that all the three energy conditions can be satis�ed by properly
choosing the two constants r0 and R0, provided that

m < �(
p
2� 1); or m >

p
2� 1: (76)

That is, in this case if we make the identi�cation x2 = z and x3 = ', all the solutions withm < �(p2�1);
or with m >

p
2 � 1 can be produced by cylindrically symmetric shells that satisfy all the three energy

conditions.
As shown in the last section, the parameter m is related to � via the relation,

m = � 2�

2� � 1
; (77)

where the signs \�" depend on the way how to take the vacuum limits. However, in any case, in terms
of �, Eq.(76) takes the form,
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� < � 1p
8
; or � > +

1p
8
: (78)

Comparing this result with the corresponding one for the LC solutions obtained in the last subsection,
we can see that the coupling of the electromagnetic �eld with the gravitational �eld of the LC solutions
extends the range 0 � � � 1 to the range � > 1=

p
8 or to � < �1=p8. The extension to the negative

values of � is particularly interesting, as in the vacuum case � < 0 corresponds to the situation where
the solutions are produced by negative mass [3,5].
Now let us turn to consider the identi�cation x2 = ' and x3 = z. Then, the �rst junction condition

Eq.(55) requires

� = r0G+(R0); C = R0G+(R0); (79)

while from Eq.(62) we �nd that

� =
1

�

"
1

r0
� 1

G+(R0)R
1+m2

0

#
; p' =

1

�

"
m2

G+(R0)R
1+m2

0

� 1

r0

#
;

pz =
1

�G+(R0)R1+m2

�
(1 +m2) +

2m

G+(R0)

�
(�R0)

m � (�R0)
�m
��

: (80)

From these expressions it can be shown that by properly choosing the constant r0, all the three energy
conditions can be satis�ed, provided that

m2 � 1; or � � +
1

4
: (81)

This is the same condition as that given in the corresponding vacuum solutions, given by Eq.(73).

C. B3 6= 0; B0 = B2 = 0

As we noted previously, the case with B3 6= 0; B0 = B2 = 0 can be obtained from the case B2 6=
0; B0 = B3 = 0 by exchanging the two spacelike coordinates z and '. Since in the above, both
possibilities of (x2; x3) = (z; ') and (x2; x3) = ('; z) were considered, the above analysis in fact already
included the case B3 6= 0; B0 = B2 = 0, so in the following we shall not consider it any more.

D. B0 6= 0; B2 = B3 = 0

In this case, the metric outside the shell is given by Eqs.(40) and (41) with  = 1. As we showed in the
last section, the spacetimes are singular at both R = 0 and R = ��1. The physics of the spacetimes in
the region 0 � R � ��1 is not clear (if there is any), while the spacetimes in the region ��1 < R < +1
are maximal with a naked singularity at R = ��1. Thus, in this case in order to avoid the presence of
spacetime singularities outside the shell, we shall assume that R0 > ��1, where R0 denotes the location
of the shell in the coordinates T; R; z, and ', and choose, without loss of generality, the function G(R)
as a monotonically increasing function,

G(R) = (�R)jmj � (�R)�jmj : (82)

As in the previous cases, now we have two possibilities of identifying the axial and angular coordinates z
and '. Let us �rst consider the identi�cation x2 = z and x3 = '. Then, we �nd that the �rst junction
condition Eq.(55) requires

� =
1

Rm2

0 G�(R0)
; C =

R0G�(R0)

r0
; (83)

and that Eq.(62) gives
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� =
1

�

(
1

r0
� 1 +m2

R1+m2

0 G�(R0)
� 2jmj
R1+m2

0 G2
�(R0)

h
(�R0)

jmj + (�R0)
�jmj

i)
;

pz =
1

�

(
1

R1+m2

0 G�(R0)
� 1

r0

)
; p' =

m2

�R1+m2

0 G�(R0)
: (84)

From these expressions it can be shown that none of the three energy conditions is satis�ed. Thus, unlike
the last subcase, now due to the presence of the purely electric �eld, all the solutions in this case cannot
be produced by physically acceptable thin shells.
If we choose x2 = ' and x3 = z, then we �nd that

� =
r0

Rm2

0 G�(R0)
; C = R0G�(R0); (85)

and that

� =
1

�

(
1

r0
� 1 +m2

R1+m2

0 G�(R0)
� 2jmj
R1+m2

0 G2
�(R0)

h
(�R0)

jmj + (�R0)
�jmj

i)
;

pz =
1

�R1+m2

0 G�(R0)
; p' =

1

�

(
m2

R1+m2

0 G�(R0)
� 1

r0

)
; (86)

from which it can be shown that, similar to the last case, none of the three energy conditions is satis�ed
for any choice of the free parameters involved.
Therefore, due to the presence of the purely electric �eld produced by a charge distribution along one of

the space-like coordinates z and ', the solutions cannot be produced by physically acceptable cylindrical
shell-like sources.

IV. CONCLUDING REMARKS

The Levi-Civita solutions coupled with an electromagnetic �eld are usually classi�ed into three di�erent
families. In the �rst two, the electromagnetic �elds are purely magnetic and produced by a current along,
respectively, the spacelike axis x2 and x3, while in the last family it is purely electric and produced by a
charge distribution along the axial axis. In this paper, the local and global properties of all these solutions
have been studied, and in particular found that all the solutions have a naked singularity at R = 0, except
for the ones with m = �1. In the latter case, two solutions are distinguishable, one, given by Eq.(33), is
free of any kind of spacetime singularities, and the corresponding spacetime is geodesically complete. The
other, given by Eq.(44), has a coordinate singularity at r = r0. After being maximally extended beyond
this hypersurface, it has been found that this hypersurface actually represents Cauchy horizons. It has
been also found that the solutions that represent the purely electric �elds are also singular at a �nite
radial distance R = ��1. In this case one can introduce a new radial coordinate R0 = R�R0, so that in
terms of R0 these singularities occur at R0 = 0. Then, one can consider R0 = 0 as the new axis, and the
resultant spacetimes are asymptotically at as R0 ! +1 and maximal in the region 0 � R0 < +1 with
a naked singularity on the axis.
The limits of these solutions to vacuum case have been also studied, and found that such limits are

not unique. As a matter of fact, at least there exist two di�erent ways to take such limits. For each limit
one will get the Levi-Civita vacuum solutions with di�erent range of values for the parameter �. From
such limiting process, we have found that when � ! +1, the metric becomes Minkowski with x2 as the
angular coordinate [9], while when � ! 0+, the metric becomes Minkowski, too, but now with x3 being
the angular coordinate. This observation leads us to believe that at certain value of �, the two spacelike
coordinates x2 and x3 change their roles. By constructing cylindrical thin shells, we have been able to
con�rm our above expectation, that is, we have found that, if we make the identi�cation (x2; x3) = (z; '),
the corresponding Levi-Civita vacuum solutions can be produced by physically acceptable thin shells only
when 0 � � � 1. However, if we make the identi�cation (x2; x3) = ('; z), the corresponding Levi-Civita
vacuum solutions can be produced by physically acceptable thin shells for � � 1=4.
Cylindrically symmetric thin shells for the Levi-Civita solutions coupled with electromagnetic �elds

have been also studied, and found that, in the case of purely magnetic �eld, due to the coupling of the
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magnetic �eld with the gravitational �eld, the range, 0 � � � 1, of the corresponding vacuum case,
has been extended to � > 1=

p
8 or to � < �1=p8. The latter extension is very remarkable, as in the

vacuum case it corresponds to the spacetimes that are produced by negative masses [3,5]. However,
in the case of purely electric �eld, it has been found that the solutions resulted from both of the two
identi�cations, (x2; x3) = (z; ') and (x2; x3) = ('; z), cannot be produced by any physically acceptable
cylindrical thin shells. This causes some caution on the physical reality of these solutions. Although the
sources considered in this paper are the most general cylindrical thin shells, one may still argue that they
are still not general enough to give a de�nitive answer to this problem, and therefore, it would be very
interesting to look for other kinds of non-shell-like sources for these solutions.
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Fig. 2 The corresponding Penrose diagram for the solution given by Eq.(46). The vertical lines r = 0 represent

the spacetime singularities that are timelike, and the ones r = r0 represent Cauchy horizons. Region I (II) is

symmetric to Region I (II 0), and Regions II and II 0 are asymptotically at.


