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ABSTRACT

We explore some consequences of the inequivalent representations of a g-oscillator al-
gebra on a highly deformed quantum ¢-gas. By a simple choice of the continuum limit of
the background vy, the constant volume specific heat per mass C' shows a A-point transi-
tion and has a 7° dependence for low temperatures. Choosing a particular value of the
deformation parameter ¢, we are able to reproduce the experimental value of the He I1

specific heat for T' < 0.5 °K.
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Bosonic g-oscillators [1] are a generalization of the Heisenberg algebra obtained by the
introduction of a deformation parameter ¢. In the last few years their statistical properties
have been studied mostly in the ¢ ~ 1 approximation [2-4]. In a series of papers [5-6] the
highly deformed region (¢ >> 1) started to be investigated in connection with an ideal
g-gas, showing the presence of the Bose-Einstein condensation phenomenum [7] with the
specific heat, Cy, exhibiting a A-point discontinuity.

A strong reason to discuss deformed quantum gases is the role played by the theory
of ideal quantum gases in many different physical phenomena. Besides, the interest in
the highly deformed region has very recently been sharpened by a result [8] showing the
connection between spin-glasses and ¢-oscillators for ¢ far from 1.

In the articles referred to above [1-8] the quantum ¢-gas was analysed in its “funda-
mental” representation of a g-oscillator algebra. More recently our interest was turned
towards inequivalent representations of g-oscillator algebras [9, 10] and we have studied
their consequences on a quantum ¢-gas [11]. In the present letter we show that in the
case where ¢ >> 1, for a particular choice of the background g, the g-gas presents a
superfluid behaviour.

The mutually adjoint operators a,a™ and the self-adjoint operator N generate the

algebra

[N,at]=a* , [N,a]=—a, (1)

aat — qa"’a = q_N ,

where ¢ € IR. Under the assumption that the spectrum is non-degenerate a series of
inequivalent representations were built [9]. For ¢ > 1, denoting the normalized basis

vectors by |n), the following representations were obtained:

atln) = P10+ 1)
aln) = ]l —1) ; (2)

Ny = (ro+mn)n) ;

where [n] = (¢" — ¢7")/(¢ — q¢~") and 1y is a real free parameter which goes to zero when
g — 1. It is worthwhile noting that vy can be zero for ¢ # 1 and we call that case the
“fundamental” representation of algebra (1). Moreover, only for 1y = 0 (for arbitrary

q € IRY), can N be interpreted as the usual particle number operator for the state |n);
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for vy # 0, its eigenvalue is interpreted as the sum of the number of particles n, in the
state |n), plus a background effect 9. We define here the operator N=N-— vy, which
is now the number operator, N|n> = n|n), for the representations in (2) characterized by
g.

In the “fundamental” representation, the relations

act —qata=q¢ | adt —q¢lata =N (3)

are simultaneously verified for the ¢-Fock representation given by eq. (2) with 1y = 0. In
the case we are going to consider (¢ > 1), g is the lowest bound of the spectrum of N
and therefore classifies inequivalent representations of eq. (1) algebra [9]. In fact, it has
been verified that [10]

¢ = ¢ (IN] - a*a) @)

is a Casimir operator of the eq. (1) algebra and in the representation (2) one has
Cln) = q7"[wo]In) - (5)

As the operator C (cf. eq. (4)) is different from zero only for ¢ # 1, one sees from eq. (5)
that for ¢ = 1, v is necessarily zero.
Let us consider an ideal quantum ¢-gas in the representation (2) described by the

Hamiltonian

H=3 wafa =3 w(N] - ") (6)

where a; and a} are interpreted as annihilation and creation operators of particles in levels
¢ with energy w; and N, is an operator that can be intepreted as the number operator

of particles in levels 7 when v = 0. The operators a;,aj and N; satisfy the following

algebra:
aiaf — ¢ ata; =647 (7)
[Niya;] = —6ija; 3 [Niyaf] = éyaf .
The grand canonical partition function is
7 =Trexp[-B(H — uN)] = exp(=p9Q) , (8)

where p 1s the chemical potential, N = ZNu 0 is the grand canonical potential and
= 1/kT with k the Boltzmann constant.
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As 7 factorizes for the above system, the grand canonical potential is given by a sum

over single level partition functions [3]
1 0
Q:_B E: anz (wlvﬂvﬂ) (9)

with

o0

200, Bp) = 3 P (10)

According to the usual procedure we enclose the system in a large 3-dimensional
volume V' and the sum over levels is replaced by an integral over p-space. We assume
that the energy spectrum of the g-particles follows the dispersion law w; — p?/2m. In
addition, we take a different v for each level 7 such that in the continuum limit we have
q_”é — a(q)p~'. As we shall see later this choice will have interesting consequences. With

these assumptions the grand canonical potential becomes
_V 3 alg) n
Q:W/dpane 2 Pll=wn) (11)
The pressure P = —Q/V and the density n = (0P/0u)|r,v are then:

P(T.z) = BTN Y(2) 5 (12)

n(T,2) = A7y(2) ;

where z = exp(fBp) is the fugacity and

64mm> k3T
-3 _ bamm kL (13)
" Thely)
is the modified thermal wavelenght. The functions Y, (z) and y,(z) are respectively
1 o 3 n=0
V(s = o[ deat =l , (14)
6 Jo n _—[n]z
D e
n=0

o0 o0

Z [n]nz”e_[n]l’ Z [n]mz”"’me_([n]"'[m])QU
1 o _ n.m=
yq(Z) = 6/ dx xS n_ooo — e 2 ’
0 Z n _—[n]z > n_—[n]w
VAN e

Be(a)p

2m

where x =
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Let us now study the Bose-Einstein condensation for the highly deformed case. It
has been shown [12, 6] that in order to have a given accuracy in the integrals above the
number of terms to be kept depends on ¢. As usual, when z — 1 (or T' — T, T, being the
critical temperature) one has to take into account the zero point energy and single out its
contribution in (12). In addition, equation (10) shows that the effect of the deformation
is cancelled when w; = 0. As a consequence the series (10) cannot be approximated by a
polynomial for the zero energy level. As usual [13], the critical temperature is defined as
n'/PAl = y;/?’(l) which in the present case gives

afg)h 1
4rlli2m k y1/3( 1) '

Tq_

(15)

As explained above, similarly to the non-deformed case [13], the basic equations are

P(T,z) = p7'AY(2), (16.a)
n(T,2) = % o AT() (16.b)

In eq. (16b) the first term on the right-hand side comes from the contribution of zero-
energy and is relevant only for 7" < T4,

The constant volume specific heat per mass, C', defined as

1 0¢
is
C = 12kA°n"'m™ Yy(z) = 9km ™17t qu ; , T >T?! (18.a)
Yyl
C = 12k/\ n~'mT Y, (1) T<T?, (18.b)

where ¢ is the energy density (internal energy per volume) and y,(z) = 88—2 Ye(2).

The above specific heat deserves some comments. To start with, it shows a A-point
transition since the second term on the right-hand side of eq. (18a) is different from
zero. This is a feature of interesting phenomena, including superfluidity. Moreover, it
is remarkable that C' oc T? for T < T4, thus presenting the low-temperature behavior
of a superfluid [14, 16]. This is a consequence of the assumption we have made for the
continuum limit of the background effec vy.

Equation (18b) can be used for a direct comparison with the experimentally deter-

mined value of He I specific heat [14, 15] for temperatures lower than 0.5 °A". In this
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region, the saturated vapour pressure specific heat (s, which is the quantity found from
calorimetric measurements [14], can be considered equal to the constant volume specific

heat per mass C'. From (18b) and (13) we have

O 3 x 22rm2ktY, (1)
Pa(gm

T . (19)

We take m = msiy. = 6.65 x 1072%g, n = 2.2 x 107*2¢m ™2 [13] and choose ¢ = 3,
which leads to Y,(1) = 0.9658. In this case the experimental value of the specific heat
of He II, for T < 0.5 °K, (Cs = 2.04 (£0.04) x 107272 J/q deg) [14-15] is reproduced
for a(q = 3) = 2.45 ergs sec. em™"'. We note that the integrals (14) and y/(z) converge
within the Mathematica software accuracy for z = 1 keeping only five terms in the series
(Table I).

Although the specific heat (19) reproduces the experimental results for He I for
T < 0.5 °K and presents a A-point transition, the particular simple choice we have made
for the continuum limit of the background effect vy, does not provide a good model for
He I1. Indeed, for temperatures higher than 0.5 °K’, the specific heat does not have a 7%
dependence anymore [15-16]. As a consequence, the critical temperature obtained from
(15) is completely different from the experimental value of the He I critical temperature
(T = 3.17 °K) for any value of q. We believe that with a less simplistic choice for the
continuum limit of the background effect 1y we might be able to describe the specific
heat of He II. Finally, it is known that there is no completely satisfactory theory for
the superfluidity phenomenum [15, 16] yet. Our result indicates that the solution to this

problem can somehow be related to deformed algebras.

Acknowledgements: The authors thank C. Tsallis for calling their attention to ref. [7]
and M.R-M. thanks 5. Sciuto for discussions.
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TABLE 1

n 4 3 6 10

Y5(1) | 0.965787 | 0.965799 | 0.965799 | 0.965799
ys(1) | 0.933122 | 0.933123 | 0.933123 | 0.933123
ys(1) | 0.871144 | 0.871148 | 0.871148 | 0.871148

Numerical results for Y, (1), y,(1) and y;(1) for ¢ = 3. n is the number of terms in series

(14). The Mathematica software accuracy is obtained for n = 5.
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