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Abstract

We explore some consequences of the inequivalent representations of a q-oscillator al-

gebra on a highly deformed quantum q-gas. By a simple choice of the continuum limit of

the background �0, the constant volume speci�c heat per mass C shows a �-point transi-

tion and has a T 3 dependence for low temperatures. Choosing a particular value of the

deformation parameter q, we are able to reproduce the experimental value of the He II

speci�c heat for T < 0:5 0K.
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Bosonic q-oscillators [1] are a generalization of the Heisenberg algebra obtained by the

introduction of a deformation parameter q. In the last few years their statistical properties

have been studied mostly in the q ' 1 approximation [2{4]. In a series of papers [5{6] the

highly deformed region (q >> 1) started to be investigated in connection with an ideal

q-gas, showing the presence of the Bose-Einstein condensation phenomenum [7] with the

speci�c heat, CV , exhibiting a �-point discontinuity.

A strong reason to discuss deformed quantum gases is the role played by the theory

of ideal quantum gases in many di�erent physical phenomena. Besides, the interest in

the highly deformed region has very recently been sharpened by a result [8] showing the

connection between spin-glasses and q-oscillators for q far from 1.

In the articles referred to above [1{8] the quantum q-gas was analysed in its \funda-

mental" representation of a q-oscillator algebra. More recently our interest was turned

towards inequivalent representations of q-oscillator algebras [9, 10] and we have studied

their consequences on a quantum q-gas [11]. In the present letter we show that in the

case where q >> 1, for a particular choice of the background �0, the q-gas presents a

super
uid behaviour.

The mutually adjoint operators a; a+ and the self-adjoint operator N generate the

algebra

[N; a+] = a+ ; [N; a] = �a ; (1)

aa+ � qa+a = q�N ;

where q 2 IR. Under the assumption that the spectrum is non-degenerate a series of

inequivalent representations were built [9]. For q > 1, denoting the normalized basis

vectors by jni, the following representations were obtained:

a+jni = q��0=2[n+ 1]1=2jn+ 1i ;

ajni = q��0=2[n]1=2jn� 1i ; (2)

N jni = (�0 + n)jni ;

where [n] = (qn� q�n)=(q � q�1) and �0 is a real free parameter which goes to zero when

q ! 1. It is worthwhile noting that �0 can be zero for q 6= 1 and we call that case the

\fundamental" representation of algebra (1). Moreover, only for �0 = 0 (for arbitrary

q 2 IR+), can N be interpreted as the usual particle number operator for the state jni;
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for �0 6= 0, its eigenvalue is interpreted as the sum of the number of particles n, in the

state jni, plus a background e�ect �0. We de�ne here the operator N̂ = N � �0, which

is now the number operator, N̂ jni = njni, for the representations in (2) characterized by

�0.

In the \fundamental" representation, the relations

aa+ � qa+a = q�N ; aa+ � q�1a+a = qN (3)

are simultaneously veri�ed for the q-Fock representation given by eq. (2) with �0 = 0. In

the case we are going to consider (q > 1), �0 is the lowest bound of the spectrum of N

and therefore classi�es inequivalent representations of eq. (1) algebra [9]. In fact, it has

been veri�ed that [10]

C = q�N([N ]� a+a) (4)

is a Casimir operator of the eq. (1) algebra and in the representation (2) one has

Cjni = q��0[�0]jni : (5)

As the operator C (cf. eq. (4)) is di�erent from zero only for q 6= 1, one sees from eq. (5)

that for q = 1, �0 is necessarily zero.

Let us consider an ideal quantum q-gas in the representation (2) described by the

Hamiltonian

H =
X
i

!ia
+
i ai =

X
i

!i([Ni]� qNiCi) ; (6)

where ai and a
+
i are interpreted as annihilation and creation operators of particles in levels

i with energy !i and Ni is an operator that can be intepreted as the number operator

of particles in levels i when �i0 = 0. The operators ai; a
+
i and Ni satisfy the following

algebra:

aia
+
j � q�ija+j ai = �ijq

�Ni ; (7)

[Ni; aj] = ��ijaj ; [Ni; a
+
j ] = �ija

+
j :

The grand canonical partition function is

Z = Tr exp[��(H � �N̂)] = exp(��
) ; (8)

where � is the chemical potential, N̂ =
P
N̂i, 
 is the grand canonical potential and

� = 1=kT with k the Boltzmann constant.
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As Z factorizes for the above system, the grand canonical potential is given by a sum

over single level partition functions [3]


 = �
1

�

X
i

lnZ0
i (wi; �; �) (9)

with

Z0
i (!i; �; �) =

1X
n=0

e��(!iq
��i0 [n]��n) : (10)

According to the usual procedure we enclose the system in a large 3-dimensional

volume V and the sum over levels is replaced by an integral over ~p-space. We assume

that the energy spectrum of the q-particles follows the dispersion law !i ! p2=2m. In

addition, we take a di�erent �i0 for each level i such that in the continuum limit we have

q��
i
0 ! �(q)p�1. As we shall see later this choice will have interesting consequences. With

these assumptions the grand canonical potential becomes


 =
�V

h3�

Z
d3p ln

1X
n=0

e��(
�(q)
2m p[n]��n) : (11)

The pressure P = �
=V and the density n = (@P=@�)jT;V are then:

P (T; z) = ��1 ^�3q Yq(z) ; (12)

n(T; z) = ^�3q yq(z) ;

where z = exp(��) is the fugacity and

^�3q =
64�m3k3T 3

h3�3(q)
(13)

is the modi�ed thermal wavelenght. The functions Yq(z) and yq(z) are respectively

Yq(z) =
1

6

Z
1

0
dx x3

1X
n=0

[n]zne�[n]x

1X
n=0

zne�[n]x
; (14)

yq(z) =
1

6

Z
1

0
dx x3

2
666664

1X
n=0

[n]nzne�[n]x

1X
n=0

zne�[n]x
�

1X
n;m=0

[n]mzn+me�([n]+[m])x

 
1X
n=0

zne�[n]x
!2

3
777775 ;

where x = ��(q)p
2m .
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Let us now study the Bose-Einstein condensation for the highly deformed case. It

has been shown [12, 6] that in order to have a given accuracy in the integrals above the

number of terms to be kept depends on q. As usual, when z ! 1 (or T ! Tc; Tc being the

critical temperature) one has to take into account the zero point energy and single out its

contribution in (12). In addition, equation (10) shows that the e�ect of the deformation

is cancelled when !i = 0. As a consequence the series (10) cannot be approximated by a

polynomial for the zero energy level. As usual [13], the critical temperature is de�ned as

n1=3^q
c = y1=3q (1) which in the present case gives

T q
c =

�(q)h n1=3

4�1=2m k y
1=3
q (1)

: (15)

As explained above, similarly to the non-deformed case [13], the basic equations are

P (T; z) = ��1 ^�3q Yq(z) ; (16.a)

n(T; z) =
1

V

z

1 � z
+ ^�3q yq(z) : (16.b)

In eq. (16b) the �rst term on the right-hand side comes from the contribution of zero-

energy and is relevant only for T � T q
c .

The constant volume speci�c heat per mass, C, de�ned as

C =
1

mn

@~e

@T

�����
n

; (17)

is

C = 12k ^�3q n�1m�1 Yq(z)� 9km�1z�1
yq(z)

y0q(z)
; T > T q

c (18.a)

C = 12k ^�3q n�1m�1 Yq(1) T < T q
c ; (18.b)

where ~e is the energy density (internal energy per volume) and y0q(z) =
@
@z

yq(z).

The above speci�c heat deserves some comments. To start with, it shows a �-point

transition since the second term on the right-hand side of eq. (18a) is di�erent from

zero. This is a feature of interesting phenomena, including super
uidity. Moreover, it

is remarkable that C / T 3 for T < T q
c , thus presenting the low-temperature behavior

of a super
uid [14, 16]. This is a consequence of the assumption we have made for the

continuum limit of the background e�ec �0.

Equation (18b) can be used for a direct comparison with the experimentally deter-

mined value of He II speci�c heat [14, 15] for temperatures lower than 0:5 0K. In this
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region, the saturated vapour pressure speci�c heat Cs, which is the quantity found from

calorimetric measurements [14], can be considered equal to the constant volume speci�c

heat per mass C. From (18b) and (13) we have

C =
3� 28�m2k4Yq(1)

h3�3(q)n
T 3 : (19)

We take m = m4
2He = 6:65 � 10�24g, n = 2:2 � 10�22cm�3 [13] and choose q = 3,

which leads to Yq(1) = 0:9658. In this case the experimental value of the speci�c heat

of He II, for T < 0:5 0K, (Cs = 2:04 (�0:04) � 10�2T 3 J=q deg) [14{15] is reproduced

for �(q = 3) = 2:45 ergs sec: cm�1. We note that the integrals (14) and y0q(z) converge

within the Mathematica software accuracy for z = 1 keeping only �ve terms in the series

(Table I).

Although the speci�c heat (19) reproduces the experimental results for He II for

T < 0:5 0K and presents a �-point transition, the particular simple choice we have made

for the continuum limit of the background e�ect �0, does not provide a good model for

He II. Indeed, for temperatures higher than 0:5 0K, the speci�c heat does not have a T 3

dependence anymore [15{16]. As a consequence, the critical temperature obtained from

(15) is completely di�erent from the experimental value of the He II critical temperature

(T� = 3:17 0K) for any value of q. We believe that with a less simplistic choice for the

continuum limit of the background e�ect �0 we might be able to describe the speci�c

heat of He II. Finally, it is known that there is no completely satisfactory theory for

the super
uidity phenomenum [15, 16] yet. Our result indicates that the solution to this

problem can somehow be related to deformed algebras.
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TABLE I

q=3

n 4 5 6 10

Y3(1) 0:965787 0:965799 0:965799 0:965799

y3(1) 0:933122 0:933123 0:933123 0:933123

y03(1) 0:871144 0:871148 0:871148 0:871148

Numerical results for Yq(1), yq(1) and y0q(1) for q = 3. n is the number of terms in series

(14). The Mathematica software accuracy is obtained for n = 5.
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